LM
Liisa Myllykangas
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
6,623
h-index:
39
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology

Petra Pasanen et al.Mar 26, 2014
We describe the clinical, neuropathological, and genetic features of a Finnish patient with a novel α-synuclein (SNCA) mutation A53E. The patient was clinically diagnosed with atypical Parkinson's disease (PD) with age of onset at 36 years. In the neuropathological analysis performed at the age of 60 years, highly abundant SNCA pathology was observed throughout the brain and spinal cord showing features of multiple system atrophy and PD. Neuronal and glial (including oligodendroglial) SNCA inclusions and neurites were found to be particularly prominent in the putamen, caudatus, amygdala, temporal and insular cortices, gyrus cinguli, and hippocampus CA2-3 region. These areas as well as the substantia nigra and locus coeruleus showed neuronal loss and gliosis. We also found TDP-43 positive but mostly SNCA negative perinuclear inclusions in the dentate fascia of the hippocampus. The A53E mutation was found in 2 other relatives who had parkinsonism. Our results suggest that the novel SNCA A53E substitution is a causative mutation resulting clinically in parkinsonism and pathologically in severe multiple system atrophy- and PD-type phenotype.
0
Citation449
0
Save
0

Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo

Valerie Cullen et al.Feb 9, 2009
Abstract Background Elevated SNCA gene expression and intracellular accumulation of the encoded α-synuclein (aSyn) protein are associated with the development of Parkinson disease (PD). To date, few enzymes have been examined for their ability to degrade aSyn. Here, we explore the effects of CTSD gene expression, which encodes the lysosomal protease cathepsin D (CathD), on aSyn processing. Results Over-expression of human CTSD cDNA in dopaminergic MES23.5 cell cultures induced the marked proteolysis of exogenously expressed aSyn proteins in a dose-dependent manner. Unexpectedly, brain extractions, Western blotting and ELISA quantification revealed evidence for reduced levels of soluble endogenous aSyn in ctsd knock-out mice. However, these CathD-deficient mice also contained elevated levels of insoluble, oligomeric aSyn species, as detected by formic acid extraction. In accordance, immunohistochemical studies of ctsd -mutant brain from mice, sheep and humans revealed selective synucleinopathy-like changes that varied slightly among the three species. These changes included intracellular aSyn accumulation and formation of ubiquitin-positive inclusions. Furthermore, using an established Drosophila model of human synucleinopathy, we observed markedly enhanced retinal toxicity in ctsd -null flies. Conclusion We conclude from these complementary investigations that: one, CathD can effectively degrade excess aSyn in dopaminergic cells; two, ctsd gene mutations result in a lysosomal storage disorder that includes microscopic and biochemical evidence of aSyn misprocessing; and three, CathD deficiency facilitates aSyn toxicity. We therefore postulate that CathD promotes 'synucleinase' activity, and that enhancing its function may lower aSyn concentrations in vivo .
0

Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study

Hannu Laaksovirta et al.Aug 31, 2010
Background The genetic cause of amyotrophic lateral sclerosis (ALS) is not well understood. Finland is a well suited location for a genome-wide association study of ALS because the incidence of the disease is one of the highest in the world, and because the genetic homogeneity of the Finnish population enhances the ability to detect risk loci. We aimed to identify genetic risk factors for ALS in the Finnish population. Methods We did a genome-wide association study of Finnish patients with ALS and control individuals by use of Illumina genome-wide genotyping arrays. DNA was collected from patients who attended an ALS specialty clinic that receives referrals from neurologists throughout Finland. Control samples were from a population-based study of elderly Finnish individuals. Patients known to carry D90A alleles of the SOD1 gene (n=40) were included in the final analysis as positive controls to assess whether our genome-wide association study was able to detect an association signal at this locus. Findings We obtained samples from 442 patients with ALS and 521 control individuals. After quality control filters were applied, 318 167 single nucleotide polymorphisms (SNPs) from 405 people with ALS and 497 control individuals were available for analysis. We identified two association peaks that exceeded genome-wide significance. One was located on chromosome 21q22 (rs13048019, p=2·58×10−8), which corresponds to the autosomal recessive D90A allele of the SOD1 gene. The other was detected in a 232 kb block of linkage disequilibrium (rs3849942, p=9·11×10−11) in a region of chromosome 9p that was previously identified in linkage studies of families with ALS. Within this region, we defined a 42-SNP haplotype that was associated with significantly increased risk of ALS (p=7·47×10−33 when people with familial ALS were compared with controls, odds ratio 21·0, 95% CI 11·2–39·1) and which overlapped with an association locus recently reported for frontotemporal dementia. For the 93 patients with familial ALS, the population attributable risk for the chromosome 9p21 locus was 37·9% (95% CI 27·7–48·1) and that for D90A homozygosity was 25·5% (16·9–34·1). Interpretation The chromosome 9p21 locus is a major cause of familial ALS in the Finnish population. Our data suggest the presence of a founder mutation for chromosome 9p21-linked ALS. Furthermore, the overlap with the risk haplotype recently reported for frontotemporal dementia provides further evidence of a shared genetic cause for these two neurodegenerative diseases. Funding National Institutes of Health and National Institute on Aging, Microsoft Research, ALS Association, Helsinki University Central Hospital, Finnish Academy, Finnish Medical Society Duodecim, and Kuopio University.
0
Citation255
0
Save
1

MFN2Influences Amyotrophic Lateral Sclerosis Pathology

Kristi Russell et al.Oct 31, 2021
Abstract Objective To better understand the pathology of amyotrophic lateral sclerosis, we used sequence data from patients seen at the University of Utah to identify novel disease-associated loci. We utilized both in vitro and in vivo studies to determine the biological effect of patient mutations in MFN2 . Method Sequence data for a total of 140 patients were run through VAAST and Phevor to determine genes that were more burdened with rare, nonsynonymous variants compared to control longevity cohort. Variants identified in MFN2 were expressed in Mfn2 knockout cells to determine if mutant MFN2 could rescue mitochondrial morphology defects. We identified additional rare, nonsynonymous variants in MFN2 in ALSdb that were expressed in knockout mouse embryonic fibroblasts (MEFs). Membrane potential was measured to quantify mitochondrial health upon mutant MFN2 expression. mfn2 knockout zebrafish were used to examine movement compared to wildtype and protein aggregation in brain. Results MFN2 mutations identified in ALS patients from our University of Utah cohort and ALSdb were defective in rescuing morphological defects in Mfn2 knockout MEFs. Selected mutants showed decreased membrane potential compared to wildtype MFN2 expression. Zebrafish heterozygous and homozygous for loss of mfn2 showed increased TDP-43 levels in their hindbrain and cerebellum. Conclusion In total, 21 rare, deleterious mutations in MFN2 were tested in Mfn2 knockout MEFs. Mutant MFN2 expression was not able to rescue the knockout phenotype, though at differing degrees of severity. Decreased membrane potential also argues for inhibited mitochondrial function. Increased TDP-43 levels in mutant zebrafish illustrates MFN2’s function in ALS pathology. MFN2 variants influence ALS pathology and highlight the importance of mitochondria in neurodegeneration.
1
Citation1
0
Save
Load More