Abstract Hexaploid spring wheat ( Triticum aestivum ) may exhibit significant crown rot disease responses to infection by Fusarium pseudograminearum , with a range of susceptibility levels available in commercial cultivars. Dry conditions during grain-fill may lead to the expression of prematurely senescing culms, which typically fail to set grain. Assessment of hexaploid spring wheat plants exhibiting both non-senescent and prematurely senescent culms was performed using visual discolouration, Fusarium pseudograminearum biomass, vascular colonisation and quantification of wheat DNA in culm sections sampled at three different heights above the crown and at the peduncle. A comparison of these parameters at four time points from milk development, when senescent culms are first observed, to maturity was conducted. Samples from six commercial cultivars were collected in 2014 from Narrabri and Tamworth, New South Wales and Wellcamp, Queensland. Prematurely senescent culms exhibited greater visual discolouration, Fusarium pseudograminearum biomass and vascular colonisation than non-senescent culms in each cultivar. Colonisation of xylem and phloem tissue was extensive in the basal portions of prematurely senescent culms (36 to 99%), and suggests significant impacts on water and nutrient movement during crown rot disease. Maturation coincided with significant changes in Fusarium pseudograminearum biomass and vascular colonisation. Wheat DNA content varied among cultivars, culm conditions, culm sections and sampling times. The variation in the severity of disease states between culms of the same plant suggests that the timing of initiation of infection in individual culms may vary.