IB
Ivana Bjedov
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
585
h-index:
24
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Stress-Induced Mutagenesis in Bacteria

Ivana Bjedov et al.May 29, 2003
+5
B
O
I
The evolutionary significance of stress-induced mutagenesis was evaluated by studying mutagenesis in aging colonies (MAC) of Escherichia coli natural isolates. A large fraction of isolates exhibited a strong MAC, and the high MAC variability reflected the diversity of selective pressures in ecological niches. MAC depends on starvation, oxygen, and RpoS and adenosine 3′,5′-monophosphate regulons; thus it may be a by-product of genetic strategies for improving survival under stress. MAC could also be selected through beneficial mutations that it generates, as shown by computer modeling and the patterns of stress-inducible and constitutive mutagenesis. We suggest that irrespective of the causes of their emergence, stress-induced mutations participate in adaptive evolution.
0
Citation583
0
Save
8

A versatile automated high-throughput drug screening platform for zebrafish embryos

Alexandra Lubin et al.Dec 16, 2020
+7
Y
J
A
Abstract Zebrafish provide a unique opportunity for drug screening in living animals, with the fast developing, transparent embryos allowing for relatively high throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed a easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan ® Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft ® Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions, and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and x-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high content screening in zebrafish.
8
Citation1
0
Save
0

An expedited screening platform for the discovery of anti-ageing compounds in vitro and in vivo

Celia Lujan et al.Jul 2, 2024
+10
S
E
C
Abstract Background Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. Methods Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila , to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. Results We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila . We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. Conclusions Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.
0
Citation1
0
Save
0

A CellAge epigenetic clock for expedited discovery of anti-ageing compounds in vitro

Celia Lujan et al.Oct 13, 2019
+10
S
E
C
We aim to improve anti-ageing drug discovery, currently achieved through laborious and lengthy longevity analysis. Recent studies demonstrated that the most accurate molecular method to measure human age is based on CpG methylation profiles, as exemplified by several epigenetics clocks that can accurately predict an individual's age. Here, we developed CellAge, a new epigenetic clock that measures subtle ageing changes in primary human cells in vitro. As such, it provides a unique tool to measure the effects of relatively short pharmacological treatments on ageing. We validated our CellAge clock against known longevity drugs such as rapamycin and trametinib. Moreover, we uncovered novel anti-ageing drugs, torin2 and Dactolisib (BEZ-235), demonstrating the value of our approach as a screening and discovery platform for anti-ageing strategies. CellAge outperforms other epigenetic clocks in measuring subtle ageing changes in primary human cells in culture. The tested drug treatments reduced senescence and other ageing markers, further consolidating our approach as a screening platform. Finally, we showed that the novel anti-ageing drugs we uncovered in vitro, indeed increased longevity in vivo. Our method expands the scope of CpG methylation profiling from measuring human chronological and biological age from human samples in years, to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, providing a novel accelerated discovery platform to test sought after geroprotectors.
0

Enhancing autophagy by redox regulation extends lifespan in Drosophila

Claudia Lennicke et al.Oct 2, 2019
+15
S
I
C
Redox signalling is an important modulator of diverse biological pathways and processes, and operates through specific post-translational modification of redox-sensitive thiols on cysteine residues 1-4. Critically, redox signalling is distinct from irreversible oxidative damage and functions as a reversible 'redox switch' to regulate target proteins. H2O2 acts as the major effector of redox signalling, both directly and through intracellular thiol redox relays 5,6. Dysregulation of redox homeostasis has long been implicated in the pathophysiology of many age-related diseases, as well as in the ageing process itself, however the underlying mechanisms remain largely unclear 7,8. To study redox signalling by H2O2 in vivo and explore its involvement in metabolic health and longevity, we used the fruit fly Drosophila as a model organism, with its tractable lifespan and strong evolutionary conservation with mammals 9. Here we report that inducing an endogenous redox-shift, by manipulating levels of the H2O2-degrading enzyme catalase, improves health and robustly extends lifespan in flies, independently of oxidative stress resistance and dietary restriction. We find that the catalase redox-shifted flies are acutely sensitive to starvation stress, which relies on autophagy as a vital survival mechanism. Importantly, we show that autophagy is essential for the lifespan extension of the catalase flies. Furthermore, using redox-inactive knock-in mutants of Atg4a, a major effector of autophagy, we show that the lifespan extension in response to catalase requires a key redox-regulatory cysteine residue, Cys102 in Atg4a. These findings demonstrate that redox regulation of autophagy can extend lifespan, confirming the importance of redox signalling in ageing and as a potential pro-longevity target.