JS
Jan Sijbers
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(50% Open Access)
Cited by:
7,421
h-index:
67
/
i10-index:
217
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data

Ben Jeurissen et al.Aug 7, 2014
Constrained spherical deconvolution (CSD) has become one of the most widely used methods to extract white matter (WM) fibre orientation information from diffusion-weighted MRI (DW-MRI) data, overcoming the crossing fibre limitations inherent in the diffusion tensor model. It is routinely used to obtain high quality fibre orientation distribution function (fODF) estimates and fibre tractograms and is increasingly used to obtain apparent fibre density (AFD) measures. Unfortunately, CSD typically only supports data acquired on a single shell in q-space. With multi-shell data becoming more and more prevalent, there is a growing need for CSD to fully support such data. Furthermore, CSD can only provide high quality fODF estimates in voxels containing WM only. In voxels containing other tissue types such as grey matter (GM) and cerebrospinal fluid (CSF), the WM response function may no longer be appropriate and spherical deconvolution produces unreliable, noisy fODF estimates. The aim of this study is to incorporate support for multi-shell data into the CSD approach as well as to exploit the unique b-value dependencies of the different tissue types to estimate a multi-tissue ODF. The resulting approach is dubbed multi-shell, multi-tissue CSD (MSMT-CSD) and is compared to the state-of-the-art single-shell, single-tissue CSD (SSST-CSD) approach. Using both simulations and real data, we show that MSMT-CSD can produce reliable WM/GM/CSF volume fraction maps, directly from the DW data, whereas SSST-CSD has a tendency to overestimate the WM volume in voxels containing GM and/or CSF. In addition, compared to SSST-CSD, MSMT-CSD can substantially increase the precision of the fODF fibre orientations and reduce the presence of spurious fODF peaks in voxels containing GM and/or CSF. Both effects translate into more reliable AFD measures and tractography results with MSMT-CSD compared to SSST-CSD.
0

Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging

Ben Jeurissen et al.May 19, 2012
It has long been recognized that the diffusion tensor model is inappropriate to characterize complex fiber architecture, causing tensor‐derived measures such as the primary eigenvector and fractional anisotropy to be unreliable or misleading in these regions. There is however still debate about the impact of this problem in practice. A recent study using a Bayesian automatic relevance detection (ARD) multicompartment model suggested that a third of white matter (WM) voxels contain crossing fibers, a value that, whilst already significant, is likely to be an underestimate. The aim of this study is to provide more robust estimates of the proportion of affected voxels, the number of fiber orientations within each WM voxel, and the impact on tensor‐derived analyses, using large, high‐quality diffusion‐weighted data sets, with reconstruction parameters optimized specifically for this task. Two reconstruction algorithms were used: constrained spherical deconvolution (CSD), and the ARD method used in the previous study. We estimate the proportion of WM voxels containing crossing fibers to be ∼90% (using CSD) and 63% (using ARD). Both these values are much higher than previously reported, strongly suggesting that the diffusion tensor model is inadequate in the vast majority of WM regions. This has serious implications for downstream processing applications that depend on this model, particularly tractography, and the interpretation of anisotropy and radial/axial diffusivity measures. Hum Brain Mapp 34:2747–2766, 2013. © 2012 Wiley Periodicals, Inc.
0

Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls

Jelle Veraart et al.May 16, 2013
Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods.
0

Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution

Ben Jeurissen et al.May 27, 2010
Abstract Constrained spherical deconvolution (CSD) is a new technique that, based on high‐angular resolution diffusion imaging (HARDI) MR data, estimates the orientation of multiple intravoxel fiber populations within regions of complex white matter architecture, thereby overcoming the limitations of the widely used diffusion tensor imaging (DTI) technique. One of its main applications is fiber tractography. The noisy nature of diffusion‐weighted (DW) images, however, affects the estimated orientations and the resulting fiber trajectories will be subject to uncertainty. The impact of noise can be large, especially for HARDI measurements, which employ relatively high b ‐values. To quantify the effects of noise on fiber trajectories, probabilistic tractography was introduced, which considers multiple possible pathways emanating from one seed point, taking into account the uncertainty of local fiber orientations. In this work, a probabilistic tractography algorithm is presented based on CSD and the residual bootstrap. CSD, which provides accurate and precise estimates of multiple fiber orientations, is used to extract the local fiber orientations. The residual bootstrap is used to estimate fiber tract probability within a clinical time frame, without prior assumptions about the form of uncertainty in the data. By means of Monte Carlo simulations, the performance of the CSD fiber pathway uncertainty estimator is measured in terms of accuracy and precision. In addition, the performance of the proposed method is compared to state‐of‐the‐art DTI residual bootstrap tractography and to an existing probabilistic CSD tractography algorithm using clinical DW data. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.
0

Gliomas: Diffusion Kurtosis MR Imaging in Grading

Sofie Cauter et al.Mar 9, 2012
To assess the diagnostic accuracy of diffusion kurtosis magnetic resonance imaging parameters in grading gliomas.The institutional review board approved this prospective study, and informed consent was obtained from all patients. Diffusion parameters-mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis, and radial and axial kurtosis-were compared in the solid parts of 17 high-grade gliomas and 11 low-grade gliomas (P<.05 significance level, Mann-Whitney-Wilcoxon test, Bonferroni correction). MD, FA, mean kurtosis, radial kurtosis, and axial kurtosis in solid tumors were also normalized to the corresponding values in contralateral normal-appearing white matter (NAWM) and the contralateral posterior limb of the internal capsule (PLIC) after age correction and were compared among tumor grades.Mean, radial, and axial kurtosis were significantly higher in high-grade gliomas than in low-grade gliomas (P = .02, P = .015, and P = .01, respectively). FA and MD did not significantly differ between glioma grades. All values, except for axial kurtosis, that were normalized to the values in the contralateral NAWM were significantly different between high-grade and low-grade gliomas (mean kurtosis, P = .02; radial kurtosis, P = .03; FA, P = .025; and MD, P = .03). When values were normalized to those in the contralateral PLIC, none of the considered parameters showed significant differences between high-grade and low-grade gliomas. The highest sensitivity and specificity for discriminating between high-grade and low-grade gliomas were found for mean kurtosis (71% and 82%, respectively) and mean kurtosis normalized to the value in the contralateral NAWM (100% and 73%, respectively). Optimal thresholds for mean kurtosis and mean kurtosis normalized to the value in the contralateral NAWM for differentiating high-grade from low-grade gliomas were 0.52 and 0.51, respectively.There were significant differences in kurtosis parameters between high-grade and low-grade gliomas; hence, better separation was achieved with these parameters than with conventional diffusion imaging parameters.
Load More