AK
Aimal Khankhel
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
6
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
66

Self-organized morphogenesis of a human neural tubein vitroby geometric constraints

Eyal Karzbrun et al.Jul 25, 2021
+8
K
A
E
Understanding how human embryos develop their shape is a fundamental question in physics of life with strong medical implications. However, it is challenging to study the dynamics of organ formation in humans. Animals differ from humans in key aspects, and in particular in the development of the nervous system. Conventional organoids are quantitatively unreproducible and exhibit highly variable morphology. Here we present a morphologically reproducible and scalable approach for studying human organogenesis in a dish, which is compatible with live imaging. We achieve this by precisely controlling cell fate pattern formation in 2D stem cell sheets, while allowing for self-organization of tissue shape in 3D. Upon triggering neural pattern formation, the initially flat stem cell sheet undergoes folding morphogenesis and self-organizes into a millimeter long anatomically accurate model of the neural tube, covered by epidermis. We find that neural and epidermal human tissues are necessary and sufficient for folding morphogenesis in the absence of mesoderm activity. Furthermore, we find that molecular inhibition of tissue contractility leads to defects similar to neural tube closure defects, consistent with in vivo studies. Finally, we discover that neural tube shape, including the number and location of hinge points, depends on neural tissue size. This suggests that neural tube morphology along the anterior posterior axis depends on neural plate geometry in addition to molecular gradients. Our approach provides a new path to study human organ morphogenesis in health and disease.
66
Citation4
0
Save
1

Integrated single-cell sequencing reveals principles of epigenetic regulation of human gastrulation and germ cell development in a 3D organoid model

Alex Chialastri et al.Feb 10, 2022
+3
A
E
A
Abstract The emergence of different cell types and the role of the epigenome in regulating transcription is a key yet understudied event during human gastrulation. Investigating these questions remain infeasible due to the lack of availability of embryos at these stages of development. Further, human gastrulation is marked by dynamic changes in cell states that are difficult to isolate at high purity, thereby making it challenging to map how epigenetic reprogramming impacts gene expression and cellular phenotypes. To overcome these limitations, we describe scMAT-seq, a high-throughput one-pot single-cell multiomics technology to simultaneously quantify DNA methylation, DNA accessibility and the transcriptome from the same cell. Applying scMAT-seq to 3D human gastruloids, we characterized the epigenetic landscape of major cell types corresponding to the germ layers and primordial germ cell-like cells (hPGCLC). As the identity of the progenitors that give rise to human PGCLCs remain unclear, we used this system to discover that the progenitors emerge from epiblast cells and show transient characteristics of both amniotic- and mesoderm-like cells, before getting specified towards hPGCLCs. Finally, as cells differentiate along different lineages during gastrulation, we surprisingly find that while changes in DNA accessibility are tightly correlated to both upregulated and downregulated genes, reorganization of gene body DNA methylation is strongly related to only genes that get downregulated, with genes that turn on displaying a lineage trajectory-dependent correlation with DNA methylation. Collectively, these results demonstrate that scMAT-seq is a high-throughput and sensitive approach to elucidate epigenetic regulation of gene expression in complex systems such as human gastrulation that are marked by rapidly transitioning cell states.
1
Citation2
0
Save