Structural MRI allows unparalleled in vivo study of the anatomy of the developing human brain. For more than two decades [1Jernigan T.L. Trauner D.A. Hesselink J.R. Tallal P.A. Maturation of human cerebrum observed in vivo during adolescence.Brain. 1991; 114: 2037-2049Crossref PubMed Scopus (368) Google Scholar], MRI research has revealed many new aspects of this multifaceted maturation process, significantly augmenting scientific knowledge gathered from postmortem studies. Postnatal brain development is notably protracted and involves considerable changes in cerebral cortical [2Giedd J.N. Blumenthal J. Jeffries N.O. Castellanos F.X. Liu H. Zijdenbos A. Paus T. Evans A.C. Rapoport J.L. Brain development during childhood and adolescence: a longitudinal MRI study.Nat. Neurosci. 1999; 2: 861-863Crossref PubMed Scopus (3996) Google Scholar, 3Shaw P. Kabani N.J. Lerch J.P. Eckstrand K. Lenroot R. Gogtay N. Greenstein D. Clasen L. Evans A. Rapoport J.L. et al.Neurodevelopmental trajectories of the human cerebral cortex.J. Neurosci. 2008; 28: 3586-3594Crossref PubMed Scopus (1208) Google Scholar, 4Sowell E.R. Peterson B.S. Thompson P.M. Welcome S.E. Henkenius A.L. Toga A.W. Mapping cortical change across the human life span.Nat. Neurosci. 2003; 6: 309-315Crossref PubMed Scopus (1738) Google Scholar], subcortical [5Ostby Y. Tamnes C.K. Fjell A.M. Westlye L.T. Due-Tønnessen P. Walhovd K.B. Heterogeneity in subcortical brain development: A structural magnetic resonance imaging study of brain maturation from 8 to 30 years.J. Neurosci. 2009; 29: 11772-11782Crossref PubMed Scopus (357) Google Scholar], and cerebellar [6Caviness Jr., V.S. Kennedy D.N. Richelme C. Rademacher J. Filipek P.A. The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images.Cereb. Cortex. 1996; 6: 726-736Crossref PubMed Scopus (424) Google Scholar, 7Tiemeier H. Lenroot R.K. Greenstein D.K. Tran L. Pierson R. Giedd J.N. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study.Neuroimage. 2010; 49: 63-70Crossref PubMed Scopus (286) Google Scholar] structures, as well as significant architectural changes in white matter fiber tracts [8Lebel C. Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood.J. Neurosci. 2011; 31: 10937-10947Crossref PubMed Scopus (795) Google Scholar, 9Paus T. Zijdenbos A. Worsley K. Collins D.L. Blumenthal J. Giedd J.N. Rapoport J.L. Evans A.C. Structural maturation of neural pathways in children and adolescents: in vivo study.Science. 1999; 283: 1908-1911Crossref PubMed Scopus (1069) Google Scholar, 10Westlye L.T. Walhovd K.B. Dale A.M. Bjørnerud A. Due-Tønnessen P. Engvig A. Grydeland H. Tamnes C.K. Ostby Y. Fjell A.M. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry.Cereb. Cortex. 2010; 20: 2055-2068Crossref PubMed Scopus (534) Google Scholar, 11Mukherjee P. Miller J.H. Shimony J.S. Conturo T.E. Lee B.C. Almli C.R. McKinstry R.C. Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging.Radiology. 2001; 221: 349-358Crossref PubMed Scopus (356) Google Scholar] (see [12Giedd J.N. Rapoport J.L. Structural MRI of pediatric brain development: what have we learned and where are we going?.Neuron. 2010; 67: 728-734Abstract Full Text Full Text PDF PubMed Scopus (607) Google Scholar]). Although much work has described isolated features of neuroanatomical development, it remains a critical challenge to characterize the multidimensional nature of brain anatomy, capturing different phases of development among individuals. Capitalizing on key advances in multisite, multimodal MRI, and using cross-validated nonlinear modeling, we demonstrate that developmental brain phase can be assessed with much greater precision than has been possible using other biological measures, accounting for more than 92% of the variance in age. Further, our composite metric of morphology, diffusivity, and signal intensity shows that the average difference in phase among children of the same age is only about 1 year, revealing for the first time a latent phenotype in the human brain for which maturation timing is tightly controlled.Video AbstracteyJraWQiOiI4ZjUxYWNhY2IzYjhiNjNlNzFlYmIzYWFmYTU5NmZmYyIsImFsZyI6IlJTMjU2In0.eyJzdWIiOiJkNzBmZDc3M2QyMzYyNGZkYmM0MzYwMjRkZjUwMTdkOSIsImtpZCI6IjhmNTFhY2FjYjNiOGI2M2U3MWViYjNhYWZhNTk2ZmZjIiwiZXhwIjoxNjc3OTA5MTYxfQ.E3LHqo9lELLV50n84FwuTJbzpMGulwkVF2YxgejqxIzppuVJN0aJiSrT0tuNUKpnLatteEc0xTd7P-QO-WX_vckA6rTNoyQ13iFEPBwaGXiuwjsR0LM3PaOabJnGx6WhgW4KRwe8f4CErXm1szSUESI3URvsWYYOAVkHssdmw5HPgy4tPn5dJ50cRBqPJNd4W4SkY5kq58N37t7YUpMH-cFUlG9FEFon2bd6Hoh2LiEPozw_yY_Gb84YR6GZ8ibKZKWKsF1YeOTV6dsN--Dp3hGudEPWcIslaZU2nJJpFpcoS0m96VjYsJdgCq_OKxXhJI4pux3oLVQOaZIfEqtMDw(mp4, (15.04 MB) Download video