JK
Jasmina Kravić
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
843
h-index:
16
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Loss-of-function mutations in SLC30A8 protect against type 2 diabetes

Jason Flannick et al.Mar 2, 2014
David Altshuler and colleagues report genotyping or sequencing of ∼150,000 individuals from several population-based cohorts, identifying 12 rare protein-truncating variants in SLC30A8, encoding a pancreatic islet zinc transporter. Carriers of these rare protein-truncating variants in SLC30A8 show reduced risk of type 2 diabetes and reduced glucose levels. Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1,2,3, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8)4 and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels5,6,7. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10−6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (−0.17 s.d., P = 4.6 × 10−4). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk8,9, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts10,11,12,13,14,15. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
0
Citation453
0
Save
0

Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

Kyle Gaulton et al.Nov 9, 2015
Kyle Gaulton, Mark McCarthy, Andrew Morris and colleagues report fine mapping and genomic annotation of 39 established type 2 diabetes susceptibility loci. They find that the set of potential causal variants is enriched for overlap with FOXA2 binding sites in human islet and liver cells, and they show that a likely causal variant near MTNR1B increases FOXA2-bound enhancer activity, providing a molecular mechanism to explain the effect of this locus on disease risk. We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
0
Citation390
0
Save
0

Refining The Accuracy Of Validated Target Identification Through Coding Variant Fine-Mapping In Type 2 Diabetes

Anubha Mahajan et al.May 31, 2017
Identification of coding variant associations for complex diseases offers a direct route to biological insight, but is dependent on appropriate inference concerning the causal impact of those variants on disease risk. We aggregated coding variant data for 81,412 type 2 diabetes (T2D) cases and 370,832 controls of diverse ancestry, identifying 40 distinct coding variant association signals (at 38 loci) reaching significance (p<2.2x10-7). Of these, 16 represent novel associations mapping outside known genome-wide association study (GWAS) signals. We make two important observations. First, despite a threefold increase in sample size over previous efforts, only five of the 40 signals are driven by variants with minor allele frequency <5%, and we find no evidence for low-frequency variants with allelic odds ratio >1.29. Second, we used GWAS data from 50,160 T2D cases and 465,272 controls of European ancestry to fine-map these associated coding variants in their regional context, with and without additional weighting to account for the global enrichment of complex trait association signals in coding exons. At the 37 signals for which we attempted fine-mapping, we demonstrate convincing support (posterior probability >80% under the 'annotation-weighted' model) that coding variants are causal for the association at 16 (including novel signals involving POC5 p.His36Arg, ANKH p.Arg187Gln, WSCD2 p.Thr113Ile, PLCB3 p.Ser778Leu, and PNPLA3 p.Ile148Met). However, at 13 of the 37 loci, the associated coding variants represent 'false leads' and naïve analysis could have led to an erroneous inference regarding the effector transcript mediating the signal. Accurate identification of validated targets is dependent on correct specification of the contribution of coding and non-coding mediated mechanisms at associated loci.