AV
Anette Varbo
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
197
h-index:
41
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Repositioning of the global epicentre of non-optimal cholesterol

Cristina Taddei et al.Jun 3, 2020
Abstract High blood cholesterol is typically considered a feature of wealthy western countries 1,2 . However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world 3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health 4,5 . However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.
0

Dairy Consumption and Body Mass Index Among Adults: Mendelian Randomization Analysis of 184802 Individuals from 25 Studies

Tao Huang et al.Jan 1, 2018
Abstract BACKGROUND Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined. METHODS We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies. RESULTS Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4). CONCLUSIONS The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
0
Citation35
0
Save
0

Refining The Accuracy Of Validated Target Identification Through Coding Variant Fine-Mapping In Type 2 Diabetes

Anubha Mahajan et al.May 31, 2017
Identification of coding variant associations for complex diseases offers a direct route to biological insight, but is dependent on appropriate inference concerning the causal impact of those variants on disease risk. We aggregated coding variant data for 81,412 type 2 diabetes (T2D) cases and 370,832 controls of diverse ancestry, identifying 40 distinct coding variant association signals (at 38 loci) reaching significance (p<2.2x10-7). Of these, 16 represent novel associations mapping outside known genome-wide association study (GWAS) signals. We make two important observations. First, despite a threefold increase in sample size over previous efforts, only five of the 40 signals are driven by variants with minor allele frequency <5%, and we find no evidence for low-frequency variants with allelic odds ratio >1.29. Second, we used GWAS data from 50,160 T2D cases and 465,272 controls of European ancestry to fine-map these associated coding variants in their regional context, with and without additional weighting to account for the global enrichment of complex trait association signals in coding exons. At the 37 signals for which we attempted fine-mapping, we demonstrate convincing support (posterior probability >80% under the 'annotation-weighted' model) that coding variants are causal for the association at 16 (including novel signals involving POC5 p.His36Arg, ANKH p.Arg187Gln, WSCD2 p.Thr113Ile, PLCB3 p.Ser778Leu, and PNPLA3 p.Ile148Met). However, at 13 of the 37 loci, the associated coding variants represent 'false leads' and naïve analysis could have led to an erroneous inference regarding the effector transcript mediating the signal. Accurate identification of validated targets is dependent on correct specification of the contribution of coding and non-coding mediated mechanisms at associated loci.