BZ
Benjamin Ziman
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
3
h-index:
5
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

Novel tumorigenic FOXM1-PTAFR-PTAF axis revealed by multi-omic profiling in TP53/CDKN2A-double knockout human gastroesophageal junction organoid model

Hua Zhao et al.May 11, 2022
Abstract Inactivation of the tumor suppressor genes TP53 and CDKN2A occurs early during gastroesophageal junction (GEJ) tumorigenesis. However, due to a paucity of GEJ-specific disease models, cancer-promoting consequences of TP53 and CDKN2A inactivation at the GEJ have been incompletely characterized. Here we report the development of the first wild-type primary human GEJ organoid model, as well as a CRISPR-edited transformed GEJ organoid model. CRISPR/Cas9 engineering to inactivate TP53 and CDKN2A ( TP53/CDKN2A KO ) in GEJ organoids induced morphologic dysplasia as well as pro-neoplastic features in vitro and tumor formation in vivo. Notably, lipidomic profiling identified several Platelet-Activating Factors (PTAFs) among the most upregulated lipids in CRISPR-edited organoids; and importantly, PTAF/PTAFR abrogation by siRNA knockdown or a pharmacologic inhibitor (WEB2086) significantly blocked proliferation and other pro-neoplastic features of TP53/CDKN2A KO GEJ organoids in vitro and tumor formation in vivo . In addition, murine xenografts derived from Eso26, an established esophageal adenocarcinoma (EAC) cell line, were suppressed by WEB2086. Mechanistically, TP53/CDKN2A dual inactivation disrupted both the transcriptome and the DNA methylome, likely mediated by key transcription factors, particularly Forkhead Box M1 (FOXM1). Importantly, FOXM1 activated PTAFR transcription by binding to the PTAFR promoter, further amplifying the PTAF-PTAFR pathway. In summary, we established a robust model system for investigating early GEJ neoplastic events, identified crucial metabolic and epigenomic changes occurring during GEJ model tumorigenesis, and discovered a potential cancer-therapeutic strategy, while providing insights into pro-neoplastic mechanisms associated with TP53/CDKN2A inactivation in early GEJ neoplasia. One Sentence Summary Novel tumorigenic FOXM1-PTAFR-PTAF axis revealed by multi-omic profiling in TP53/CDKN2A- double knockout human gastroesophageal junction organoid model. Graphic Abstract
20
Citation2
0
Save
15

Comprehensive analyses of partially methylated domains and differentially methylated regions in esophageal cancer reveal both cell-type- and cancer-specific epigenetic regulation

Yueyuan Zheng et al.Aug 18, 2022
Abstract As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma (ESCC) and adenocarcinoma (EAC), arising from distinct cells-of-origin. However, distinguishing cell-type-specific molecular features from cancer-specific characteristics has been challenging. Here, we analyze whole-genome bisulfite sequencing (WGBS) data on 45 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-aware method to identify large partially methylated domains (PMDs), revealing profound heterogeneity at both the methylation level (depth) and genomic distribution (breadth) of PMDs across tumor samples. We identify subtype-specific PMDs, which are associated with repressive transcription, chromatin B compartments and high somatic mutation rate. While the genomic locations of these PMDs are pre-established in normal cells, the degree of loss is significantly higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie the genomic distribution PMDs. At a smaller genomic scale, both cell-type- and cancer-specific differentially methylated regions (DMRs) are identified for each subtype. Using binding motif analysis within these DMRs, we show that a cell-type-specific transcription factor such as HNF4A can maintain the binding sites that it establishes in normal cells, while being recruited to new binding sites with novel partners such as FOSL1 in cancer. Finally, leveraging pan-tissue single-cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of the cell-type-specific PMDs and DMRs identified here in esophageal cancer, are actually markers that co-occur in other cancers originating from related cell types. These findings advance our understanding of the DNA methylation dynamics at various genomic scales in normal and malignant states, providing novel mechanistic insights into cell-type- and cancer-specific epigenetic regulations.
15
Citation1
0
Save
3

Epithelial Infection with Candida albicans Elicits a Multi-system Response in Planarians

Eli Maciel et al.Nov 12, 2020
ABSTRACT Candida albicans is one of the most common fungal pathogens of humans. Prior work introduced the planarian Schmidtea mediterranea as a new model system to study the host response to fungal infection at the organismal level. In the current study, we analyzed host-pathogen changes that occurred in situ during early infection with C. albicans . We found that the transcription factor Bcr1 and its downstream adhesin Als3 are required for C. albicans to adhere to and colonize the planarian epithelial surface, and that adherence of C. albicans triggers a multi-system host response that is mediated by the Dectin signaling pathway. This infection response is characterized by two peaks of stem cell divisions and transcriptional changes in differentiated tissues including the nervous and the excretory systems. This response bears some resemblance to a wound-like response to physical injury; however, it takes place without visible tissue damage and it engages a distinct set of progenitor cells. Overall, we identified two C. albicans proteins that mediate epithelial infection of planarians and a comprehensive host response facilitated by diverse tissues to effectively clear the infection.
0

A druggable cascade links methionine metabolism to epigenomic reprogramming in squamous cell carcinoma

Chehyun Nam et al.Jun 20, 2024
Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.