JA
Jane Antony
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
478
h-index:
10
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ageing hallmarks exhibit organ-specific temporal signatures

Nicholas Schaum et al.Jul 15, 2020
+90
O
B
N
Ageing is the single greatest cause of disease and death worldwide, and understanding the associated processes could vastly improve quality of life. Although major categories of ageing damage have been identified—such as altered intercellular communication, loss of proteostasis and eroded mitochondrial function1—these deleterious processes interact with extraordinary complexity within and between organs, and a comprehensive, whole-organism analysis of ageing dynamics has been lacking. Here we performed bulk RNA sequencing of 17 organs and plasma proteomics at 10 ages across the lifespan of Mus musculus, and integrated these findings with data from the accompanying Tabula Muris Senis2—or ‘Mouse Ageing Cell Atlas’—which follows on from the original Tabula Muris3. We reveal linear and nonlinear shifts in gene expression during ageing, with the associated genes clustered in consistent trajectory groups with coherent biological functions—including extracellular matrix regulation, unfolded protein binding, mitochondrial function, and inflammatory and immune response. Notably, these gene sets show similar expression across tissues, differing only in the amplitude and the age of onset of expression. Widespread activation of immune cells is especially pronounced, and is first detectable in white adipose depots during middle age. Single-cell RNA sequencing confirms the accumulation of T cells and B cells in adipose tissue—including plasma cells that express immunoglobulin J—which also accrue concurrently across diverse organs. Finally, we show how gene expression shifts in distinct tissues are highly correlated with corresponding protein levels in plasma, thus potentially contributing to the ageing of the systemic circulation. Together, these data demonstrate a similar yet asynchronous inter- and intra-organ progression of ageing, providing a foundation from which to track systemic sources of declining health at old age. Bulk RNA sequencing of organs and plasma proteomics at different ages across the mouse lifespan is integrated with data from the Tabula Muris Senis, a transcriptomic atlas of ageing mouse tissues, to describe organ-specific changes in gene expression during ageing.
0
Citation406
0
Save
71

Molecular hallmarks of heterochronic parabiosis at single-cell resolution

Róbert Pálovics et al.Mar 2, 2022
+137
N
A
R
The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality1. Although an increasing number of interventions show promise for rejuvenation2, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, haematopoietic stem cells and hepatocytes are among those cell types that are especially responsive. On the pathway level, young blood invokes new gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. We observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it in select cell types. Together, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.
71
Citation67
1
Save
7

Mouse lemur transcriptomic atlas elucidates primate genes, physiology, disease, and evolution

Camille Ezran et al.Aug 7, 2022
+24
J
W
C
ABSTRACT Mouse lemurs ( Microcebus spp.) are an emerging model organism for primate biology, behavior, health, and conservation. Although little has been known about their cellular and molecular biology, in the accompanying paper we used large-scale single cell RNA-sequencing of 27 organs and tissues to identify over 750 molecular cell types and their full transcriptomic profiles. Here we use this extensive transcriptomic dataset to uncover thousands of previously unidentified genes and hundreds of thousands of new splice junctions in the reference genome that globally define lemur gene structures and cell-type selective expression and splicing and to investigate gene expression evolution. We use the atlas to explore the biology and function of the lemur immune system, including the expression profiles across the organism of all MHC genes and chemokines in health and disease, and the mapping of neutrophil and macrophage development, trafficking, and activation, their local and global responses to infection, and primate-specific aspects of the program. We characterize other examples of primate-specific physiology and disease such as unique features of lemur adipocytes that may underlie their dramatic seasonal rhythms, and spontaneous metastatic endometrial cancer that models the human gynecological malignancy. We identify and describe the organism-wide expression profiles of over 400 primate genes missing in mice, some implicated in human disease. Thus, an organism-wide molecular cell atlas and molecular cell autopsies can enhance gene discovery, structure definition, and annotation in a new model organism, and can identify and elucidate primate-specific genes, physiology, diseases, and evolution.
7
Citation2
0
Save
9

LMO2 is critical for early metastatic events in breast cancer

Shaheen Sikandar et al.May 26, 2021
+14
J
A
S
SUMMARY Metastasis is responsible for the majority of breast cancer-related deaths, however identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1 + / VEGFA + tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2 . Higher abundance of LMO2 + basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2 CreERT2 mice, we demonstrated that Lmo2 lineage- traced cells have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by TNFα and IL6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis. One sentence summary LMO2 modulates STAT3 signaling in breast cancer metastasis.
9
Citation1
0
Save
7

Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer's model

Michael Clarke et al.Dec 22, 2020
+12
E
F
M
Alzheimers disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify an earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the BMP pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.
0

Usp16 modulates Wnt signaling in primary tissues through Cdkn2a regulation

Maddalena Adorno et al.Jun 8, 2018
+4
S
B
M
Regulation of the Wnt pathway in stem cells and primary tissues is still poorly understood.Here we report that Usp16, a negative regulator of Bmi1/PRC1 function, modulates the Wnt pathway in mammary epithelia, primary human fibroblasts and MEFs, affecting their expansion and self- renewal potential. In mammary glands, reduced levels of Usp16 increase tissue responsiveness to Wnt, resulting in upregulation of the downstream Wnt target Axin2, expansion of the basal compartment and increased in vitro and in vivo epithelial regeneration. Usp16 regulation of the Wnt pathway in mouse and human tissues is at least in part mediated by activation of Cdkn2a, a regulator of senescence. At the molecular level, Usp16 affects Rspo-mediated phosphorylation of LRP6. In Down Syndrome, triplication of Usp16 dampens the activation of the Wnt pathway. Usp16 copy number normalization restores normal Wnt activation in Ts65Dn mice models. Genetic upregulation of the Wnt pathway in Ts65Dn mice rescues the proliferation defect observed in mammary epithelial cells. All together, these findings link important stem cell regulators like Bmi1/Usp16 and Cdkn2a to Wnt signaling, and have implications for designing therapies for conditions, like Down Syndrome, aging or degenerative diseases, where the Wnt pathway is hampered.
0

CDK19 is a Regulator of Triple-Negative Breast Cancer Growth

Robert Hsieh et al.May 10, 2018
+14
F
A
R
Triple-negative breast cancer (TNBC) is a poor prognosis disease with no clinically approved targeted therapies. Here, using in vitro and in vivo RNA interference (RNAi) screens in TNBC patient-derived xenografts (PDX), we identify cyclin dependent kinase 19 (CDK19) as a potential therapeutic target. Using in vitro and in vivo TNBC PDX models, we validated the inhibitory effect of CDK19 knockdown on tumor initiation, proliferation and metastases. Despite this, CDK19 knockdown did not affect the growth of non-transformed mammary epithelial cells. Using CD10 and EpCAM as novel tumor initiating cell (TIC) markers, we found the EpCAM(med/high)/(CD10-/low) TIC sub-population to be enriched in CDK19 and a putative cellular target of CDK19 inhibition. Comparative gene expression analysis of CDK19 and CDK8 knockdowns revealed that CDK19 regulates a number of cancer-relevant pathways, uniquely through its own action and others in common with CDK8. Furthermore, although it is known that CDK19 can act at enhancers, our CHIP-Seq studies showed that CDK19 can also epigenetically modulate specific H3K27Ac enhancer signals which correlate with gene expression changes. Finally, to assess the potential therapeutic utility of CDK19, we showed that both CDK19 knockdown and chemical inhibition of CDK19 kinase activity impaired the growth of pre-established PDX tumors in vivo. Current strategies inhibiting transcriptional co-factors and targeting TICs have been limited by toxicity to normal cells. Because of CDK19s limited tissue distribution and the viability of CDK19 knockout mice, CDK19 represents a promising therapeutic target for TNBC.