TS
Terra Stark
Author with expertise in Genomic Expression and Function in Yeast Organism
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
3
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Translational fusion of terpene synthases enhances metabolic flux by increasing protein stability

Li Cheah et al.Nov 9, 2022
ABSTRACT The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), which corresponds to increases of a similar magnitude in terpene synthase expression. Therefore, increased in vivo enzyme levels – resulting from improved expression and/or stability – is likely to be a major driver of catalytic enhancement from enzyme fusion.
1
Citation2
0
Save
20

An artificial self-assembling nanocompartment for organising metabolic pathways in yeast

Li Cheah et al.Jan 31, 2021
ABSTRACT Metabolic pathways are commonly organised by sequestration into discrete cellular compartments. Compartments prevent unfavourable interactions with other pathways and provide local environments conducive to the activity of encapsulated enzymes. Such compartments are also useful synthetic biology tools for examining enzyme/pathway behaviour and for metabolic engineering. Here, we expand the intracellular compartmentalisation toolbox for budding yeast ( Saccharomyces cerevisiae ) with engineered Murine polyomavirus virus-like particles (MPyV VLPs). The MPyV system has two components: VP1 which self-assembles into the compartment shell; and a short anchor, VP2C, which mediates cargo protein encapsulation via binding to the inner surface of the VP1 shell. Destabilised GFP fused to VP2C was specifically sorted into VLPs and thereby protected from host-mediated degradation. In order to access metabolites of native and engineered yeast metabolism, VLP-based nanocompartments were directed to assemble in the cytosol by removal of the VP1 nuclear localisation signal. To demonstrate their ability to function as a metabolic compartment, MPyV VLPs were used to encapsulate myo-inositol oxygenase (MIOX), an unstable and rate-limiting enzyme in D-glucaric acid biosynthesis. Strains with encapsulated MIOX produced ~20% more D-glucaric acid compared to controls expressing ‘free’ MIOX - despite accumulating dramatically less expressed protein - and also grew to higher cell densities. These effects were linked to enzyme stabilisation and mitigation of cellular toxicity by the engineered compartment. This is the first demonstration in yeast of an artificial biocatalytic compartment that can participate in a metabolic pathway and establishes the MPyV platform as a promising synthetic biology tool for yeast engineering.
20
Paper
Citation1
0
Save
0

Circulating TMAO, the gut microbiome and cardiometabolic disease risk: an exploration in key precursor disorders

Saba Naghipour et al.Jun 17, 2024
Abstract Background Elevations in the gut metabolite trimethylamine-N-oxide (TMAO) have been linked to cardiovascular and metabolic diseases. Whether elevated TMAO levels reflect early mechanistic involvement or a sequela of evolving disease awaits elucidation. The purpose of this study was to further explore these potential associations. Methods We investigated relationships between circulating levels of TMAO and its pre-cursor substrates, dietary factors, gut microbiome profiles and disease risk in individuals with a Healthy BMI (18.5 < BMI < 25, n = 41) or key precursor states for cardiometabolic disease: Overweight (25 < BMI < 30 kg/m 2 , n = 33), Obese (BMI > 30, n = 27) and Metabolic Syndrome (MetS; ≥ 3 ATPIII report criteria, n = 39). Results Unexpectedly, plasma [TMAO] did not vary substantially between groups (means of 3–4 µM; p > 0.05), although carnitine was elevated in participants with MetS. Gut microbial diversity and Firmicutes were also significantly reduced in the MetS group ( p < 0.05). Exploratory analysis across diverse parameters reveals significant correlations between circulating [TMAO] and seafood intake ( p = 0.007), gut microbial diversity ( p = 0.017–0.048), and plasma [trimethylamine] (TMA; p = 0.001). No associations were evident with anthropometric parameters or cardiometabolic disease risk. Most variance in [TMAO] within and between groups remained unexplained. Conclusions Data indicate that circulating [TMAO] may be significantly linked to seafood intake, levels of TMA substrate and gut microbial diversity across healthy and early disease phenotypes. However, mean concentrations remain < 5 µM, with little evidence of links between TMAO and cardiometabolic disease risk. These observations suggest circulating TMAO may not participate mechanistically in cardiometabolic disease development, with later elevations likely a detrimental sequela of extant disease.
0

Pre-pregnancy obesity is associated with an altered maternal metabolome and reduced Flt3L expression in preterm birth

Ismail Sebina et al.Dec 3, 2024
Abstract Mechanisms linking pre-pregnancy obesity to increased preterm birth risk are unclear. Here, we examined the impact of pre-pregnancy obesity on metabolites, Fms-related tyrosine kinase 3 ligand (Flt3L), and proinflammatory cytokine profiles in preterm birth. We used cytokine bead array, ELISA and Gas Chromatography-Mass Spectrometry (GC-MS) to determine cytokine and metabolite profiles in maternal and cord blood samples from 124 pregnant women in Australia, who gave birth at term ( n = 86) or preterm ( n = 38). Besides the expected variations in birth weight and gestational age, all demographic characteristics, including pre-pregnancy body mass index, were similar between the term and preterm birth groups. Mothers in the preterm birth group had reduced Flt3L ( P = 0.002) and elevated IL-6 ( P = 0.002) compared with term birthing mothers. Among mothers who gave birth preterm, those with pre-pregnancy obesity had lower Flt3L levels ( P = 0.02) compared with lean mothers. Flt3L and IL-6 were similar in cord blood across both groups, but TNFα levels ( P = 0.02) were reduced in preterm newborns. Metabolomic analysis revealed significant shifts in essential metabolites in women with pre-pregnancy obesity, some of which were linked to preterm births. Our findings suggest that maternal pre-pregnancy obesity alters the metabolome and reduces Flt3L expression, potentially increasing risk of preterm birth.