AC
Adrian Chan
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
692
h-index:
3
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Haplotyping germline and cancer genomes with high-throughput linked-read sequencing

Grace Zheng et al.Feb 1, 2016
A microfluidics approach that links short sequence reads enables haplotype construction and complex variation identification from tiny amounts of input DNA. Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.
0
Citation690
0
Save
3

Striated muscle-specific base editing enables correction of mutations causing dilated cardiomyopathy

Markus Grosch et al.Dec 15, 2022
Abstract Dilated cardiomyopathy (DCM) is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of DCM patients harbor heritable mutations which are amenable to CRISPR-based gene therapy 1 . However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart 2 . We employed a combination of the viral gene transfer vector AAVMYO with superior targeting specificity of heart muscle tissue 3 and CRISPR base editors to repair patient mutations in the cardiac splice factor Rbm20 , which cause aggressive and arrhythmogenic DCM 4 . Using optimized conditions, we could improve splice defects in human iPSC-derived cardiomyocytes (iPSC-CMs) and repair >70% of cardiomyocytes in two Rbm20 knock-in mouse models that we generated to serve as an in vivo platform of our editing strategy. Treatment of juvenile mice restored the localization defect of RBM20 in 75% of cells and splicing of RBM20 targets including TTN. Three months after injection, cardiac dilation and ejection fraction reached wildtype levels. Single-nuclei RNA sequencing (snRNA-seq) uncovered restoration of the transcriptional profile across all major cardiac cell types and whole-genome sequencing (WGS) revealed no evidence for aberrant off-target editing. Our study highlights the potential of base editors combined with AAVMYO to achieve gene repair for treatment of hereditary cardiac diseases.
3
Citation2
0
Save