ZM
Ze’ev Melamed
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
443
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration

Ze’ev Melamed et al.Jan 8, 2019
+17
C
J
Z
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear transactive response DNA-binding protein 43 (TDP-43). Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-messenger RNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from patients with sporadic ALS and familial ALS with GGGGCC repeat expansion in the C9orf72 gene, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS–FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability. The mRNA encoding stathmin-2, a protein implicated in axonal growth, is shown to be widely suppressed by premature polyadenylation in both sporadic and C9orf72 ALS through a mechanism directly dependent on loss of nuclear TDP-43 in motor neurons.
0
Citation429
0
Save
2

Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation

Jone López‐Erauskin et al.Nov 23, 2023
+23
M
M
J
2
Citation9
0
Save
22

TDP-43 stabilizes transcripts encoding stress granule protein G3BP1: potential relevance to ALS/FTD

Hadjara Sidibé et al.Sep 15, 2020
+17
S
Y
H
ABSTRACT TDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death. G3BP1 (Ras-GAP SH3-domain-binding protein 1) is a critical stress granule assembly factor. Here, we define that TDP-43 stabilizes G3BP1 transcripts via direct binding of a highly conserved cis regulatory element within the 3’UTR. Moreover, we show in vitro and in vivo that nuclear TDP-43 depletion is sufficient to reduce G3BP1 protein levels. Finally, we establish that G3BP1 transcripts are reduced in ALS/FTD patient neurons bearing TDP-43 cytoplasmic inclusions/nuclear depletion. Thus, our data suggest that, in ALS/FTD, there is a compromised stress granule response in disease-affected neurons due to impaired G3BP1 mRNA stability caused by TDP-43 nuclear depletion. These data implicate TDP-43 and G3BP1 loss of function as contributors to disease.
22
Citation3
0
Save
2

Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation

Jone López‐Erauskin et al.Dec 12, 2022
+22
M
D
J
Abstract The human mRNA most affected by TDP-43 loss-of-function is transcribed from the STMN2 gene and encodes stathmin-2 (also known as SCG10), whose loss is a neurodegenerative disease hallmark. Here using multiple in vivo approaches, including transient antisense oligonucleotide (ASO)-mediated suppression, chronic shRNA-mediated depletion in aging mice, and germline deletion, we establish stathmin-2 to be essential for acquisition and maintenance of neurofilament-dependent structuring of axoplasm critical for maintaining diameter and conduction velocity of large-myelinated axons. Sustained stathmin-2 loss from an otherwise mature adult nervous system is demonstrated over a time course of eight months to initiate and drive motor neuron disease that includes 1) shrinkage in inter-neurofilament spacing that is required to produce a three-dimensional space filling array that defines axonal caliber, 2) collapse of mature axonal caliber with tearing of outer myelin layers, 3) reduced conduction velocity, 4) progressive motor and sensory deficits (including reduction of the pain transducing neuropeptide CGRP), and 5) muscle denervation. Demonstration that chronic stathmin-2 reduction is itself sufficient to trigger motor neuron disease reinforces restoration of stathmin-2 as an attractive therapeutic approach for TDP-43-dependent neurodegeneration, including the fatal adult motor neuron disease ALS.
2
Citation2
0
Save