Predicting gene regulatory networks (GRNs) from gene expression profiles has become a common approach for identifying important biological regulators. Despite the increase in the use of inference methods, existing computational approaches do not integrate RNA-sequencing data analysis, are often not automated, and are restricted to users with bioinformatics and programming backgrounds. To address these limitations, we have developed TuxNet, an integrated user-friendly platform, which, with just a few selections, allows to process raw RNA29 sequencing data (using the Tuxedo pipeline) and infer GRNs from these processed data. TuxNet is implemented as a graphical user interface and, using expression data from any organism with an existing reference genome, can mine the regulations among genes either by applying a dynamic Bayesian network inference algorithm, GENIST, or a regression tree-based pipeline that uses spatiotemporal data, RTP-STAR. To illustrate the use of TuxNet while getting insight into the regulatory cascade downstream of the Arabidopsis root stem cell regulator PERIANTHIA (PAN), we obtained time course gene expression data of a PAN inducible line and inferred a GRN using GENIST. Using RTP-STAR, we then inferred the network of a PAN secondary downstream gene, ATHB13, for which we obtained wildtype and mutant expression profiles. Our case studies feature the versatility of TuxNet to infer networks using different types of gene expression data (i.e time course and steady-state data) as well as how inference networks are used to identify important regulators.