ZW
Zhiqiang Wu
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
1,345
h-index:
31
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Norway spruce genome sequence and conifer genome evolution

Björn Nystedt et al.May 1, 2013
+53
A
N
B
Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding. The draft genome of the Norway spruce (P. abies) is presented; this is the first gymnosperm genome to be sequenced and reveals a large genome size (20 Gb) resulting from the accumulation of transposable elements, and comparative sequencing of five other gymnosperm genomes provides insights into conifer genome evolution. The first draft gymnosperm genome, that of a Norway spruce (Picea abies), is published this week by the Spruce Genome Project consortium. The genome is from a tree originally collected in 1959 in eastern Jämtland, central Sweden. At 20 gigabases, the genome is more than a hundred times larger than that of the model plant species Arabidopsis, but the two contain a similar number of genes. The large genome size is the result of an accumulation of transposable elements. Comparative sequencing of five further gymnosperm genomes suggests that transposable element diversity is shared among extant conifers. The sequence data are available for public access from the ConGenIE website ( http://congenie.org/ ).
0
Citation1,344
0
Save
12

Detecting de novo mitochondrial mutations in angiosperms with highly divergent evolutionary rates

Amanda Broz et al.Dec 10, 2020
+2
Z
G
A
ABSTRACT Although plant mitochondrial genomes typically show low rates of sequence evolution, levels of divergence in certain angiosperm lineages suggest anomalously high mitochondrial mutation rates. However, de novo mutations have never been directly analyzed in such lineages. Recent advances in high-fidelity DNA sequencing technologies have enabled detection of mitochondrial mutations when still present at low heteroplasmic frequencies. To date, these approaches have only been performed on a single plant species ( Arabidopsis thaliana ). Here, we apply a high-fidelity technique (Duplex Sequencing) to multiple angiosperms from the genus Silene , which exhibits extreme heterogeneity in rates of mitochondrial sequence evolution among close relatives. Consistent with phylogenetic evidence, we found that S. latifolia maintains low mitochondrial variant frequencies that are comparable to previous measurements in Arabidopsis. Silene noctiflora also exhibited low variant frequencies despite high levels of historical sequence divergence, which supports other lines of evidence that this species has reverted to lower mitochondrial mutation rates after a past episode of acceleration. In contrast, S. conica showed much higher variant frequencies in mitochondrial (but not in plastid) DNA, consistent with an ongoing bout of elevated mitochondrial mutation rates. Moreover, we found an altered mutational spectrum in S. conica heavily biased towards AT➔GC transitions. We also observed an unusually low number of mitochondrial genome copies per cell in S. conica , potentially pointing to reduced opportunities for homologous recombination to accurately repair mismatches in this species. Overall, these results suggest that historical fluctuations in mutation rates are driving extreme variation in rates of plant mitochondrial sequence evolution.
12
Citation1
0
Save
0

The tuatara genome: insights into vertebrate evolution from the sole survivor of an ancient reptilian order

Neil Gemmell et al.Dec 8, 2019
+57
S
K
N
The tuatara (Sphenodon punctatus), the only living member of the archaic reptilian order Rhynchocephalia (Sphenodontia) once widespread across Gondwana, is an iconic and enigmatic terrestrial vertebrate endemic to New Zealand. A key link to the now extinct stem reptiles from which dinosaurs, modern reptiles, birds and mammals evolved, the tuatara provides exclusive insights into the ancestral amniotes. The tuatara genome, at ~5 Gbp, is among the largest vertebrate genomes assembled. Analysis of this genome and comparisons to other vertebrates reinforces the uniqueness of the tuatara. Phylogenetic analyses indicate tuatara diverged from the snakes and lizards ~250 MYA. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Genome sequence analysis identifies expansions of protein, non-protein-coding RNA families, and repeat elements, the latter of which show an extraordinary amalgam of reptilian and mammalian features. Sequencing of this genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. It also provides important insights into both the technical challenges and the cultural obligations associated with genome sequencing.
0

MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes

Zhiqiang Wu et al.Feb 13, 2020
+2
A
G
Z
Mitochondrial and plastid genomes in land plants exhibit some of the slowest rates of sequence evolution observed in any eukaryotic genome, suggesting an exceptional ability to prevent or correct mutations. However, the mechanisms responsible for this extreme fidelity remain unclear. We tested seven candidate genes involved in cytoplasmic DNA replication, recombination, and repair (POLIA, POLIB, MSH1, RECA3, UNG, FPG, and OGG1) for effects on mutation rates in the model angiosperm Arabidopsis thaliana by applying a highly accurate DNA sequencing technique (duplex sequencing) that can detect newly arisen mitochondrial and plastid mutations still at low heteroplasmic frequencies. We find that disrupting MSH1 (but not the other candidate genes) leads to massive increases in the frequency of point mutations and small indels and changes to the mutation spectrum in mitochondrial and plastid DNA. We also used droplet digital PCR to show transmission of de novo heteroplasmies across generations in msh1 mutants, confirming a contribution to heritable mutation rates. This dual-targeted gene is part of an enigmatic lineage within the mutS mismatch repair family that we find is also present outside of green plants in multiple eukaryotic groups (stramenopiles, alveolates, haptophytes, and cryptomonads), as well as certain bacteria and viruses. MSH1 has previously been shown to limit ectopic recombination in plant cytoplasmic genomes. Our results point to a broader role in recognition and correction of errors in plant mitochondrial and plastid DNA sequence, leading to greatly suppressed mutation rates perhaps via initiation of double-stranded breaks and repair pathways based on faithful homologous recombination.
0

The tempo and mode of angiosperm mitochondrial genome divergence inferred from intraspecific variation in Arabidopsis thaliana

Zhiqiang Wu et al.Sep 14, 2019
D
G
Z
The mechanisms of sequence divergence in angiosperm mitochondrial genomes have long been enigmatic. In particular, it is difficult to reconcile the rapid divergence of intergenic regions that can make non-coding sequences almost unrecognizable even among close relatives with the unusually high levels of sequence conservation found in genic regions. It has been hypothesized that different mutation/repair mechanisms act on genic and intergenic sequences or alternatively that mutational input is relatively constant but that selection has strikingly different effects on these respective regions. To test these alternative possibilities, we analyzed mtDNA divergence within Arabidopsis thaliana , including variants from the 1001 Genomes Project and changes accrued in published mutation accumulation (MA) lines. We found that base-substitution frequencies are relatively similar for intergenic regions and synonymous sites in coding regions, whereas indel and nonsynonymous substitutions rates are greatly depressed in coding regions, supporting a conventional model in which mutation/repair mechanisms are consistent throughout the genome but differentially filtered by selection. Most types of sequence and structural changes were undetectable in 10-generation MA lines, but we found significant shifts in relative copy number across mtDNA regions for lines grown under stressed vs. benign conditions. We confirmed quantitative variation in copy number across the A. thaliana mitogenome using both whole-genome sequencing and droplet digital PCR, further undermining the classic but oversimplified model of a circular angiosperm mtDNA structure. Our results suggest that copy number variation is one of the most rapidly evolving features in angiosperm mtDNA, even outpacing rearrangements in these notoriously structurally diverse genomes.
1

Long-read sequencing characterizes mitochondrial and plastid genome variants in Arabidopsismsh1mutants

Yi Zou et al.Mar 2, 2022
Z
D
W
Y
Summary The abundant repeats in plant mitochondrial genomes can cause rapid genome rearrangements and are also a major obstacle in short-read sequencing studies. Nuclear-encoded proteins such as MSH1 are known to suppress the generation of repeat-associated mitochondrial genome variants, but our understanding of these mechanisms has been constrained by the limitations of short-read technologies. Here, we used highly accurate long-read sequencing (PacBio HiFi) to characterize mitochondrial and plastid genome variants in Arabidopsis thaliana msh1 mutant individuals. The HiFi reads provided a global view of recombination dynamics with detailed quantification of parental and crossover recombination products for both large and small repeats. We found that recombination breakpoints were distributed relatively evenly across the length of repeated sequences and detected widespread internal exchanges of sequence variants between pairs of imperfect repeats in the mitochondrial genome of msh1 mutants. Long-read assemblies of mitochondrial genomes from seven other Arabidopsis thaliana wild-type accessions differed by repeat-mediated structural rearrangements similar to those observed in msh1 mutants, but they were all in a simple low-heteroplasmy state. The Arabidopsis plastid genome generally lacks small repeats and exhibited a very different pattern of variant accumulation in msh1 mutants compared with the mitochondrial genome. Our data illustrate the power of HiFi technology in studying repeat-mediated recombination in plant organellar genomes and improved the sequence resolution for recombinational processes suppressed by MSH1. Significance Plant organellar genomes can undergo rapid rearrangements. Long-read sequencing provides a detailed and quantitative view of mitochondrial and plastid genome variants normally suppressed by MSH1, advancing our understanding of plant organellar genome dynamics.
0

An improved mitochondrial reference genome for Arabidopsis thaliana Col-0

Daniel Sloan et al.Jan 18, 2018
J
Z
D
Arabidopsis thaliana remains the foremost model system for plant genetics and genomics, and researchers rely on the accuracy of its genomic resources. The first completely sequenced angiosperm mitochondrial genome was obtained from A. thaliana C24 (Unseld et al., 1997), and more recent efforts have produced additional A. thaliana reference genomes, including one for Col-0, the most widely used ecotype (Davila et al., 2011). These studies were based on older DNA sequencing methods, making them subject to errors associated with lower levels of sequencing coverage or the extremely short read lengths produced by early-generation Illumina technologies. Indeed, although the more recently published A. thaliana mitochondrial reference genome sequences made substantial progress in improving upon earlier versions, they still have high error rates. By comparing publicly available Illumina sequence data to the A. thaliana Col-0 reference genome, we found that it contains a sequence error every 2.4 kb on average, including 57 SNPs, 96 indels (up to 901 bp in size), and a large repeat-mediated rearrangement. Most of these errors appear to have been carried over from the original A. thaliana mitochondrial genome sequence by reference-based assembly approaches, which has misled subsequent studies of plant mitochondrial mutation and molecular evolution by giving the false impression that the errors are naturally occurring variants present in multiple ecotypes. Building on the progress made by previous researchers, we provide a corrected reference sequence that we hope will serve as a useful community resource for future investigations in the field of plant mitochondrial genetics.
0

The pan-plastome of Prunus mume: insights into Prunus diversity, phylogeny, and domestication history

Jie Wang et al.Jun 3, 2024
+7
Y
J
J
Backgrounds Prunus mume in the Rosaceae and commonly referred to as mei or Chinese plum is widely used as a traditional ornamental flowering plant and fruit tree in China. Although some population and genetic analyses have been conducted for this species, no extensive comparisons of genetic variation from plastomes have yet been investigated. Methods We de novo assembled a total of 322 complete P. mume plastomes in this study and did a series of comparative analyses to better resolve pan-plastomic patterns of P. mume . To determine the phylogeny and domestication history of this species, we reconstructed the phylogenetic tree of Prunus genus, and resolved the population structure of P. mume . We also examined the nucleotide variation of P. mume to find potential DNA barcodes. Results The assembled plastomes exhibited a typical quadripartite structure and ranged from 157,871 bp to 158,213 bp in total size with a GC content ranging from 36.73 to 36.75%. A total of 112 unique genes were identified. Single nucleotide variants (SNVs) were the most common variants found among the plastomes, followed by nucleotide insertions/deletions (InDels), and block substitutions with the intergenic spacer (IGS) regions containing the greatest number of variants. From the pan-plastome data six well-supported genetic clusters were resolved using multiple different population structure analyses. The different cultivars were unevenly distributed among multiple clades. We also reconstructed a phylogeny for multiple species of Prunus to better understand genus level diversity and history from which a complex introgressive relationship between mei and other apricots/plums was resolved. Conclusion This study constructed the pan-plastome of P. mume , which indicated the domestication of P. mume involved multiple genetic origins and possible matrilineal introgression from other species. The phylogenetic analysis in Prunus and the population structure of P. mume provide an important maternal history for Prunus and the groundwork for future studies on intergenomic sequence transfers, cytonuclear incompatibility, and conservation genetics.
0

Intraspecific Polymorphism for the Presence and Absence of Entire Mitochondrial Chromosomes

Zhiqiang Wu et al.May 4, 2018
D
Z
Although mitochondrial genomes are typically thought of as single circular molecules, these genomes are fragmented into multiple chromosomes in many eukaryotes, raising intriguing questions about inheritance and (in)stability of mtDNA in such systems. A previous comparison of mitochondrial genomes from two different individuals of the angiosperm species Silene noctiflora found variation in the presence of entire mitochondrial chromosomes. Here, we expand on this work with a geographically diverse sampling of 25 S. noctiflora populations. We also included the closely related species S. turkestanica and S. undulata, with the latter exhibiting a surprising phylogenetic placement nested within the diversity of S. noctiflora mitochondrial haplotypes. Using a combination of deep sequencing and PCR-based screening for the presence of 22 different mitochondrial chromosomes, we found extensive variation in the complement of chromosomes across individuals. Much of this variation could be attributed to recent chromosome loss events. Despite the fragmented structures of these mitochondrial genomes and the evidence for occasional biparental inheritance in other Silene species, we did not find any indication of recombination between distinct mitochondrial haplotypes either within or among mitochondrial chromosomes, which may reflect the extreme paucity of nucleotide sequence polymorphism and/or the high selfing rate in this species. These results suggest that the massively expanded and fragmented mitochondrial genomes of S. noctiflora may have entered a phase of genome reduction in which they are losing entire chromosomes at a rapid rate.