Abstract In most systems, dispersal occurs despite clear fitness costs to dispersing individuals. Theory posits that spatial heterogeneity in habitat quality pushes dispersal rates to evolve towards zero, while temporal heterogeneity in habitat quality favours non-zero dispersal rates. One aspect of dispersal evolution that has received a great deal of recent attention is a process known as spatial sorting, which has been referred to as a “shy younger sibling” of natural selection. More precisely, spatial sorting is the process whereby variation in dispersal ability is sorted along density clines and will, in nature, often be a transient phenomenon. Despite this transience, spatial sorting is likely a general mechanism behind non-zero dispersal in spatiotemporally varying environments. While generally transient, spatial sorting is persistent on invasion fronts, where its effect cannot be ignored, causing rapid evolution of traits related to dispersal. Spatial sorting is described in several elegant models, yet these models require a high level of mathematical sophistication and are not accessible to most evolutionary biologists or their students. Here, we frame spatial sorting in terms of the classic haploid and diploid models of natural selection. We show that, on an invasion front, spatial sorting can be conceptualized precisely as selection operating through space rather than (as with natural selection) time, and that genotypes can be viewed as having both spatial and temporal aspects of fitness. The resultant model is strikingly similar to classic models of natural selection. This similarity renders the model easy to understand (and to teach), but also suggests that many established theoretical results around natural selection could apply equally to spatial sorting.