AR
Anu Raevuori
Author with expertise in Eating Disorders and Body Image Concerns
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
789
h-index:
39
/
i10-index:
64
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Epidemiology and Course of Anorexia Nervosa in the Community

Anna Keski‐Rahkonen et al.Aug 1, 2007
Objective: Most previous studies of the prevalence, incidence, and outcome of anorexia nervosa have been limited to cases detected through the health care system, which may bias our understanding of the disorder’s incidence and natural course. The authors sought to describe the onset and outcomes of anorexia nervosa in the general population. Method: Lifetime prevalences, incidence rates, and 5-year recovery rates of anorexia nervosa were calculated on the basis of data from 2,881 women from the 1975–1979 birth cohorts of Finnish twins. Women who screened positive for eating disorder symptoms (N=292), their screen-negative female co-twins (N=134), and 210 randomly selected screen-negative women were assessed for lifetime eating disorders by telephone by experienced clinicians. To assess outcomes after clinical recovery and to detect residua of illness, women who had recovered were compared with their unaffected co-twins and healthy unrelated women on multiple outcome measures. Results: The lifetime prevalence of DSM-IV anorexia nervosa was 2.2%, and half of the cases had not been detected in the health care system. The incidence of anorexia nervosa in women between 15 and 19 years of age was 270 per 100,000 person-years. The 5-year clinical recovery rate was 66.8%. Outcomes did not differ between detected and undetected cases. After clinical recovery, the residua of illness steadily receded. By 5 years after clinical recovery, most probands had reached complete or nearly complete psychological recovery and closely resembled their unaffected co-twins and healthy women in weight and most psychological and social measures. Conclusions: The authors found a substantially higher lifetime prevalence and incidence of anorexia nervosa than reported in previous studies, most of which were based on treated cases. Most women recovered clinically within 5 years, and thereafter usually progressed toward full recovery.
0

A genome-wide association study of anorexia nervosa

Vesna Perica et al.Feb 11, 2014
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge–purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10−7) in SOX2OT and rs17030795 (P=5.84 × 10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10−6) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10−6) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10−6), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
0
Citation306
0
Save
0

Identifying tissues implicated in Anorexia Nervosa using Transcriptomic Imputation

Laura Huckins et al.Feb 14, 2018
Anorexia nervosa (AN) is a complex and serious eating disorder, occurring in ~1% of individuals. Despite having the highest mortality rate of any psychiatric disorder, little is known about the aetiology of AN, and few effective treatments exist. Global efforts to collect large sample sizes of individuals with AN have been highly successful, and a recent study consequently identified the first genome-wide significant locus involved in AN. This result, coupled with other recent studies and epidemiological evidence, suggest that previous characterizations of AN as a purely psychiatric disorder are over-simplified. Rather, both neurological and metabolic pathways may also be involved. In order to elucidate more of the system-specific aetiology of AN, we applied transcriptomic imputation methods to 3,495 cases and 10,982 controls, collected by the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED). Transcriptomic Imputation (TI) methods approaches use machine-learning methods to impute tissue-specific gene expression from large genotype data using curated eQTL reference panels. These offer an exciting opportunity to compare gene associations across neurological and metabolic tissues. Here, we applied CommonMind Consortium (CMC) and GTEx-derived gene expression prediction models for 13 brain tissues and 12 tissues with potential metabolic involvement (adipose, adrenal gland, 2 colon, 3 esophagus, liver, pancreas, small intestine, spleen, stomach). We identified 35 significant gene-tissue associations within the large chromosome 12 region described in the recent PGC-ED GWAS. We applied forward stepwise conditional analyses and FINEMAP to associations within this locus to identify putatively causal signals. We identified four independently associated genes; RPS26, C12orf49, SUOX, and RDH16. We also identified two further genome-wide significant gene-tissue associations, both in brain tissues; REEP5, in the dorso-lateral pre-frontal cortex (DLPFC; p=8.52x10-07), and CUL3, in the caudate basal ganglia (p=1.8x10-06). These genes are significantly enriched for associations with anthropometric phenotypes in the UK BioBank, as well as multiple psychiatric, addiction, and appetite/satiety pathways. Our results support a model of AN risk influenced by both metabolic and psychiatric factors.
0

Shared Genetic Risk between Eating Disorder- and Substance-Use-Related Phenotypes: Evidence from Genome-Wide Association Studies

Melissa Munn‐Chernoff et al.Aug 23, 2019
Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa (BN) and problem alcohol use (genetic correlation [rg], twin-based=0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge-eating, AN without binge-eating, and a BN factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder (MDD). Total sample sizes per phenotype ranged from ~2,400 to ~537,000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg=0.18; false discovery rate q=0.0006), cannabis initiation and AN (rg=0.23; q<0.0001), and cannabis initiation and AN with binge-eating (rg=0.27; q=0.0016). Conversely, significant negative genetic correlations were observed between three non-diagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge-eating (rgs=-0.19 to -0.23; qs<0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for MDD loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships between these behaviors.