As sequencing read length has increased, researchers have quickly adopted longer reads for their experiments. Here, we examine host-pathogen interaction studies to assess if using longer reads is warranted. Six diverse datasets encountered in studies of host-pathogen interactions were used to assess what genomic attributes might affect the outcome of differential gene expression analysis including: gene density, operons, gene length, number of introns/exons, and intron length. Principal components analysis, hierarchical clustering with bootstrap support, and regression analyses of pairwise comparisons were undertaken on the same reads, looking at all combinations of paired and unpaired reads trimmed to 36, 54, 72, and 101-bp. For E. coli, 36-bp single end reads performed as well as any other read length and as well as paired end reads. For all other comparisons, 54-bp and 72-bp reads were typically equivalent and different from 36-bp and 101-bp reads. Read pairing improved the outcome in several, but not all, comparisons in no discernable pattern, such that using paired reads is recommended in most scenarios. No specific genome attribute appeared to influence the data. However, experiments with an a priori expected greater biological complexity had more variable results with all read lengths relative to those with decreased complexity. When combined with cost, 54-bp paired end reads provided the most robust, internally reproducible results across all comparisons. However, using 36-bp single end reads may be desirable for bacterial samples, although possibly only if the transcriptional response is expected a priori to be robust.