ML
Maxime Lamontagne
Author with expertise in Asthma
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
928
h-index:
19
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

Brian Hobbs et al.Feb 6, 2017
Michael Cho and colleagues report a genome-wide association study of risk for chronic obstructive pulmonary disease (COPD) in a large, multi-ancestry cohort. They identify 22 genome-wide significant loci, including 13 not previously associated with COPD and 4 not previously associated with any lung function trait. Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide1. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10−6) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples2,3,4,5,6,7, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis8,9 (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity10. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.
0
Citation333
0
Save
0

Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma

Ke Hao et al.Nov 29, 2012
Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55 × 10(-151)). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases.
0
Citation301
0
Save
0

A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis

Sébastien Thériault et al.Sep 5, 2017
Calcific aortic valve stenosis (CAVS) is a common and life-threatening heart disease with no drug that can stop or delay its progression. Elucidating the genetic factors underpinning CAVS is an urgent priority to find new therapeutic targets. Major landmarks in genetics of CAVS include the discoveries of NOTCH1 and LPA. However, genetic variants in these genes accounted for a small number of cases and low population-attributable risk. Here we mapped a new susceptibility locus for CAVS on chromosome 1p21.2 and identified PALMD (palmdelphin) as the causal gene. PALMD was revealed using a transcriptome-wide association study (TWAS), which combines a genome-wide association study (GWAS) of 1,009 cases and 1,017 ethnically-matched controls with the first large-scale expression quantitative trait loci (eQTL) mapping study on human aortic valve tissues (n=233). The CAVS risk alleles and increasing disease severity were both associated with lowered mRNA expression levels of PALMD in valve tissues. The top variant explained up to 12.5% of the population-attributable risk and showed similar effect and strong association with CAVS (P=1.53x10-10) in UK Biobank comparing 1,391 cases and 352,195 controls. The identification of PALMD as a susceptibility gene for CAVS provides new insights about the genetic nature of this disease and opens new avenues to investigate its etiology and develop much-needed therapeutic options.
0

Expanded genetic landscape of chronic obstructive pulmonary disease reveals heterogeneous cell type and phenotype associations

Phuwanat Sakornsakolpat et al.Jun 26, 2018
Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide novel insights into disease pathogenesis. To broaden COPD genetic risk loci discovery and identify cell type and phenotype associations we performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci with P value < 5x10-8; 47 were previously described in association with either COPD or population-based lung function. Of the remaining 35 novel loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified enrichment for loci in lung tissue, smooth muscle and alveolar type II cells. We found 9 shared genomic regions between COPD and asthma and 5 between COPD and pulmonary fibrosis. COPD genetic risk loci clustered into groups of quantitative imaging features and comorbidity associations. Our analyses provide further support to the genetic susceptibility and heterogeneity of COPD.