In age-related macular degeneration (AMD) and Sorsby's fundus dystrophy (SFD), lipid-rich deposits known as drusen accumulate under the retinal pigment epithelium (RPE). Drusen may contribute to photoreceptor and RPE degeneration in AMD and SFD. We hypothesize that stimulating β-oxidation in RPE will reduce drusen accumulation. Inhibitors of acetyl-CoA carboxylase (ACC) stimulate β-oxidation and diminish lipid accumulation in fatty liver disease. In this report we test the hypothesis that an ACC inhibitor, Firsocostat, limits the accumulation of lipid deposits in cultured RPE cells.We probed metabolism and cellular function in mouse RPE-choroid, human fetal- derived RPE cells, and induced pluripotent stem cell-derived RPE cells. We used 13 C6-glucose and 13 C16-palmitate to determine the effects of Firsocostat on glycolytic, Krebs cycle, and fatty acid metabolism. 13 C labeling of metabolites in these pathways were analyzed using gas chromatography-linked mass spectrometry. We quantified ApoE and VEGF release using enzyme-linked immunosorbent assays. Immunostaining of sectioned RPE was used to visualize ApoE deposits. RPE function was assessed by measuring the trans-epithelial electrical resistance (TEER).ACC inhibition with Firsocostat increases fatty acid oxidation and remodels lipid composition, glycolytic metabolism, lipoprotein release, and enhances TEER. When human serum is used to induce sub-RPE lipoprotein accumulation, fewer lipoproteins accumulate with Firsocostat. In a culture model of Sorsby's fundus dystrophy, Firsocostat also stimulates fatty acid oxidation, improves morphology, and increases TEER.Firsocostat remodels intracellular metabolism and improves RPE resilience to serum-induced lipid deposition. This effect of ACC inhibition suggests that it could be an effective strategy for diminishing drusen accumulation in the eyes of patients with AMD.