DP
Diana Piol
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

Wild-type FUS corrects ALS-like disease induced by cytoplasmic mutant FUS through autoregulation

Inmaculada Sanjuan-Ruiz et al.Dec 16, 2020
+12
S
M
I
Abstract Mutations in FUS, an RNA-binding protein involved in multiple steps of RNA metabolism, are associated with the most severe forms of amyotrophic lateral sclerosis (ALS). Accumulation of cytoplasmic FUS is likely to be a major culprit in the toxicity of FUS mutations. Thus, preventing cytoplasmic mislocalization of the FUS protein may represent a valuable therapeutic strategy. FUS binds to its own pre-mRNA creating an autoregulatory loop efficiently buffering FUS excess through multiple proposed mechanisms including retention of introns 6 and/or 7. Here, we introduced a wild-type FUS gene allele, retaining all intronic sequences, in mice whose heterozygous or homozygous expression of a cytoplasmically retained FUS protein (Fus ΔNLS ) was previously shown to provoke ALS-like disease or postnatal lethality, respectively. Wild-type FUS completely rescued the early lethality caused by the two Fus ΔNLS alleles, and improved age-dependent motor deficit and reduced lifespan associated with the heterozygous expression of Fus ΔNLS . Mechanistically, wild-type FUS decreased the load of cytoplasmic FUS, increased exon 7 skipping and retention of introns 6 and 7 in the endogenous mouse Fus mRNA, leading to decreased expression of the mutant mRNA. Thus, the wild-type FUS allele activates the homeostatic autoregulatory loop, maintaining constant FUS levels and decreasing the mutant protein in the cytoplasm. These results provide proof of concept that an autoregulatory competent wild-type FUS expression could protect against this devastating, currently intractable, neurodegenerative disease.
0

Frontotemporal dementia-like disease progression elicited by seeded aggregation and spread of FUS

Sonia Vazquez‐Sanchez et al.Jun 11, 2024
+10
F
B
S
Abstract RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fu sed in s arcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic Frontotemporal lobar degeneration (FTLD). Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.
0

Frontotemporal dementia-like disease progression elicited by seeded aggregation and spread of FUS

Sonia Vazquez‐Sanchez et al.Jun 3, 2024
+10
F
B
S
Abstract RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fu sed in s arcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic FTLD. Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.
0

Polyglutamine-expanded androgen receptor disrupts muscle triad, calcium dynamics and the excitation-contraction coupling gene expression program

Mathilde Chivet et al.Apr 26, 2019
+25
A
S
M
Spinal and bulbar muscular atrophy (SBMA) is caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. Although clinical and experimental evidence highlight a primary role for skeletal muscle in the onset, progression, and outcome of disease, the pathophysiological and molecular processes underlying SBMA muscle atrophy are poorly understood. Here we show that polyQ-expanded AR alters intrinsic muscle force generation before denervation. Reduced muscle force was associated with a switch in fiber-type composition, disrupted muscle striation, altered calcium (Ca++) dynamics in response to muscle contraction, and aberrant expression of excitation-contraction coupling (ECC) machinery genes in transgenic, knock-in and inducible SBMA mice and patients. Importantly, treatment to suppress polyQ-expanded AR toxicity restored ECC gene expression back to normal. Suppression of AR activation by surgical castration elicited similar ECC gene expression changes in normal mice, suggesting that AR regulates the expression of these genes in physiological conditions. Bioinformatic analysis revealed the presence of androgen-responsive elements on several genes involved in muscle function and homeostasis, and experimental evidence showed AR-dependent regulation of expression and promoter occupancy of the most up-regulated gene from transcriptomic analysis in SBMA muscle, i.e. sarcolipin, a key ECC gene. These observations reveal an unpredicted role for AR in the regulation of expression of genes involved in muscle contraction and Ca++ dynamics, a level of muscle function regulation that is disrupted in SBMA muscle, yet restored by pharmacologic treatment.