AE
Ana Elgoyhen
Author with expertise in Cochlear Neuropathy and Hearing Loss Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
1,583
h-index:
41
/
i10-index:
87
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

α10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells

Ana Elgoyhen et al.Mar 6, 2001
+3
E
D
A
We report the cloning and characterization of rat α10, a previously unidentified member of the nicotinic acetylcholine receptor (nAChR) subunit gene family. The protein encoded by the α10 nAChR subunit gene is most similar to the rat α9 nAChR, and both α9 and α10 subunit genes are transcribed in adult rat mechanosensory hair cells. Injection of Xenopus laevis oocytes with α10 cRNA alone or in pairwise combinations with either α2-α6 or β2-β4 subunit cRNAs yielded no detectable ACh-gated currents. However, coinjection of α9 and α10 cRNAs resulted in the appearance of an unusual nAChR subtype. Compared with homomeric α9 channels, the α9α10 nAChR subtype displays faster and more extensive agonist-mediated desensitization, a distinct current–voltage relationship, and a biphasic response to changes in extracellular Ca 2+ ions. The pharmacological profiles of homomeric α9 and heteromeric α9α10 nAChRs are essentially indistinguishable and closely resemble those reported for endogenous cholinergic eceptors found in vertebrate hair cells. Our data suggest that efferent modulation of hair cell function occurs, at least in part, through heteromeric nAChRs assembled from both α9 and α10 subunits.
0
Citation668
0
Save
0

Phantom percepts: Tinnitus and pain as persisting aversive memory networks

Dirk Ridder et al.Apr 18, 2011
B
R
A
D
Phantom perception refers to the conscious awareness of a percept in the absence of an external stimulus. On the basis of basic neuroscience on perception and clinical research in phantom pain and phantom sound, we propose a working model for their origin. Sensory deafferentation results in high-frequency, gamma band, synchronized neuronal activity in the sensory cortex. This activity becomes a conscious percept only if it is connected to larger coactivated “(self-)awareness” and “salience” brain networks. Through the involvement of learning mechanisms, the phantom percept becomes associated to distress, which in turn is reflected by a simultaneously coactivated nonspecific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdala. Memory mechanisms play a role in the persistence of the awareness of the phantom percept, as well as in the reinforcement of the associated distress. Thus, different dynamic overlapping brain networks should be considered as targets for the treatment of this disorder.
0

An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks

Dirk Ridder et al.Apr 17, 2013
+4
N
S
D
Tinnitus is a considered to be an auditory phantom phenomenon, a persistent conscious percept of a salient memory trace, externally attributed, in the absence of a sound source. It is perceived as a phenomenological unified coherent percept, binding multiple separable clinical characteristics, such as its loudness, the sidedness, the type (pure tone, noise), the associated distress and so on. A theoretical pathophysiological framework capable of explaining all these aspects in one model is highly needed. The model must incorporate both the deafferentation based neurophysiological models and the dysfunctional noise canceling model, and propose a ‘tinnitus core’ subnetwork. The tinnitus core can be defined as the minimal set of brain areas that needs to be jointly activated (=subnetwork) for tinnitus to be consciously perceived, devoid of its affective components. The brain areas involved in the other separable characteristics of tinnitus can be retrieved by studies on spontaneous resting state magnetic and electrical activity in people with tinnitus, evaluated for the specific aspect investigated and controlled for other factors. By combining these functional imaging studies with neuromodulation techniques some of the correlations are turned into causal relationships. Thereof, a heuristic pathophysiological framework is constructed, integrating the tinnitus perceptual core with the other tinnitus related aspects. This phenomenological unified percept of tinnitus can be considered an emergent property of multiple, parallel, dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. Communication between these different subnetworks is proposed to occur at hubs, brain areas that are involved in multiple subnetworks simultaneously. These hubs can take part in each separable subnetwork at different frequencies. Communication between the subnetworks is proposed to occur at discrete oscillatory frequencies. As such, the brain uses multiple nonspecific networks in parallel, each with their own oscillatory signature, that adapt to the context to construct a unified percept possibly by synchronized activation integrated at hubs at discrete oscillatory frequencies.
0

Developmental synaptic changes at the transient olivocochlear-inner hair cell synapse

Graciela Kearney et al.Oct 24, 2018
+3
L
J
G
Abstract In the mature mammalian cochlea, inner hair cells (IHCs) are mainly innervated by afferent fibers that convey sound information to the central nervous system. During postnatal development, however, medial olivocochlear (MOC) efferent fibers transiently innervate the IHCs. The MOC-IHC synapse, functional from postnatal day (P)0 to hearing onset (P12), undergoes dramatic changes in the sensitivity to acetylcholine (ACh) and in the expression of key postsynaptic proteins. To evaluate whether there are associated changes in the properties of ACh release during this period, we used a cochlear preparation from mice at P4, P6-7 and P9-11 and monitored transmitter release from MOC terminals in voltage-clamped IHCs in the whole-cell configuration. The quantum content increased 5.6x from P4 to P9-11 due to increases in the size and replenishment rate of the readily releasable pool (RRP) of synaptic vesicles, without changes in their probability of release (P vesicle ) or quantum size. This strengthening in transmission was accompanied by changes in the short-term plasticity (STP) properties, which switched from facilitation at P4 to depression at P9-11. We have previously shown that at P9-11, ACh release is supported by P/Q and N-type voltage-gated calcium channels (VGCCs) and negatively regulated by BK potassium channels activated by Ca 2+ influx through L-type VGCCs. We now show that at P4 and P6-7, release is mediated by P/Q-, R- and L-type VGCCs. Interestingly, L-type VGCCs have a dual role: they both support release and fuel BK channels, suggesting that at immature stages the presynaptic proteins involved in release are less compartmentalized. Significance statement During postnatal development prior to the onset of hearing, cochlear IHCs present spontaneous Ca 2+ action potentials which release glutamate at the first auditory synapse in the absence of sound stimulation. The IHC Ca 2+ action potential frequency pattern, which is crucial for the correct establishment and function of the auditory system, is regulated by the efferent MOC system that transiently innervates IHCs during this period. We show short-term synaptic plasticity properties of the MOC-IHC synapse that tightly shape this critical developmental period.
0
Citation3
0
Save
13

Synaptic contributions to cochlear outer hair cell Ca2+ homeostasis

Marcelo Moglie et al.Aug 2, 2020
J
A
D
M
Abstract For normal cochlear function, outer hair cells (OHCs) require a precise regulation of intracellular Ca 2+ levels. Influx of Ca 2+ occurs both at the stereocillia tips and through the basolateral membrane. In this latter compartment, two different origins for Ca 2+ influx have been poorly explored: voltage-gated Ca 2+ channels (VGCC) at synapses with type II afferent neurons, and α9α10 cholinergic nicotinic receptors at synapses with medio-olivochlear complex (MOC) neurons. Using functional imaging in rodent OHCs, we report that these two Ca 2+ entry sites are closely positioned, but present different regulation mechanisms. Ca 2+ spread from MOC synapses is contained by cisternal Ca 2+ -ATPases. Considered a weak drive for transmitter release, we unexpectedly found that VGCC Ca 2+ signals are comparable in size to those elicited by α9α10 and can be potentiated by ryanodine receptors. Finally, we showed that sorcin, a highly expressed gene product in OHCs with reported Ca 2+ control function in cardiomy-ocytes, regulates basal Ca 2+ levels and MOC synaptic activity in OHCs.
13
Citation1
0
Save
9

Purinergic signaling controls spontaneous activity in the auditory system throughout early development

Travis Babola et al.Aug 12, 2020
+4
Z
S
T
ABSTRACT Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea prior to hearing onset and propagate through future sound processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K + efflux and subsequent depolarization of inner hair cells (IHCs). However, little is known about when this activity emerges or whether different mechanisms underlie distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in IHCs and spiral ganglion neurons (SGNs), which begins at birth and follows a base to apex developmental gradient. At all developmental stages, pharmacological inhibition of P2Y1 metabotropic purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus of awake mice revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period, yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea, indicate that this input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of purinergic autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound. SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.
9
Citation1
0
Save
0

Strengthening of the efferent olivocochlear system leads to synaptic dysfunction and tonotopy disruption of a central auditory nucleus

Mariano Guilmi et al.Oct 2, 2018
+4
V
L
M
The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells (IHCs). In this work, we used an α9 cholinergic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9′T, L9′T) to understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) were smaller in L9′T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analysed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a medio-lateral axis. The topographic organization of MNTB physiological properties observed in WT mice was abolished in the L9′T mice. Additionally, electrophysiological recordings in slices evidenced MNTB synaptic alterations, which were further supported by morphological alterations. The present results suggest that the transient cochlear efferent innervation to IHCs during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the correct synaptic transmission at central auditory nuclei.
0

Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor

Sofía Gallino et al.Aug 9, 2024
+8
J
L
S
The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca
0

Distinct evolutionary trajectories of neuronal and hair cell nicotinic acetylcholine receptors

Irina Marcovich et al.Apr 29, 2019
+5
A
P
I
The expansion and pruning of ion channel families has played a crucial role in the evolution of nervous systems. Remarkably, with a highly conserved vertebrate complement, nicotinic acetylcholine receptors (nAChRs) are unique among ligand-gated ion channels in that members of the family have distinct roles in synaptic transmission in non-overlapping domains, either in the nervous system, the inner ear hair cells or the neuromuscular junction. Here, we performed a comprehensive analysis of vertebrate nAChRs sequences, single cell expression patterns and comparative functional properties of receptors from three representative tetrapod species. We show that hair cell nAChRs underwent a distinct evolutionary trajectory to that of neuronal receptors. These were most likely shaped by different co-expression patterns and co-assembly rules of component subunits. Thus, neuronal nAChRs showed high degree of coding sequence conservation, coupled to greater co-expression variance and conservation of functional properties across tetrapod clades. In contrast, hair cell α9α10 nAChRs exhibited greater sequence divergence, narrow co-expression pattern and great variability of functional properties across species. These results point to differential substrates for random change within the family of gene paralogs that relate to the segregated roles of nAChRs in synaptic transmission.Significance statement Our work exploits several peculiarities of the family of vertebrate nicotinic acetylcholine receptors (nAChRs) to explore the evolutionary trajectories of a ligand-gated ion channel family. By performing a comprehensive comparative analysis of nAChR subunits coding sequences, single cell expression patterns and functional properties we found a contrasting evolutionary history between nAChRs with widespread expression in the nervous system compared to those with isolated expression in the inner ear. Evolutionary changes were focused on differences in co-expression and co-assembly patterns for the former and coding sequences in the latter. This multidisciplinary approach provides further insight into the evolutionary processes that shaped the nervous and sensory systems of extant animals.
0

Co-release of GABA and ACh from medial olivocochlear neurons fine tunes cochlear efferent inhibition

Tais Castagnola et al.Aug 16, 2024
+10
S
V
T
During development, inner hair cells (IHCs) in the mammalian cochlea are unresponsive to acoustic stimuli but instead exhibit spontaneous activity. During this same period, neurons originating from the medial olivocochlear complex (MOC) transiently innervate IHCs, regulating their firing pattern which is crucial for the correct development of the auditory pathway. Although the MOC-IHC is a cholinergic synapse, previous evidence indicates the widespread presence of gamma-aminobutyric acid (GABA) signaling markers, including presynaptic GABA
Load More