AA
Akbar Ali
Author with expertise in Efficacy and Safety of Antiretroviral Therapy for HIV
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
371
h-index:
29
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Selection of HIV-1 for Resistance to Fourth Generation Protease Inhibitors Reveals Two Independent Pathways to High-Level Resistance

E. Spielvogel et al.Nov 9, 2019
Well-designed viral protease inhibitors (PIs) potently inhibit replication as well as create a high genetic barrier for resistance. Through in vivo selective pressure, we have generated high-level resistance against ten HIV-1 PIs and their precursor, the FDA-approved drug darunavir (DRV), achieving 1,000-fold resistance over the starting EC50. The accumulation of mutations revealed two pathways to high-level resistance, resulting in protease variants with up to 14 mutations in and outside of the active site. The two pathways demonstrate the interplay between drug resistance and viral fitness. Replicate selections showed that one inhibitor could select for resistance through either pathway, although subtle changes in chemical structure of the inhibitors led to preferential use of one pathway over the other. Viral variants from the two pathways showed differential selection of compensatory mutations in Gag cleavage sites. These results reveal the high-level of selective pressure that is attainable with these fourth-generation protease inhibitors, and the interplay between selection of mutations to confer resistance while maintaining viral fitness.
0

Structural Adaptation of Darunavir Analogs Against Primary Resistance Mutations in HIV-1 Protease

G.J. Lockbaum et al.Sep 3, 2018
HIV-1 protease is one of the prime targets of agents used in antiretroviral therapy against HIV. However, under selective pressure of protease inhibitors, primary mutations at the active site weaken inhibitor binding to confer resistance. Darunavir (DRV) is the most potent HIV-1 protease inhibitor in clinic; resistance is limited, as DRV fits well within the substrate envelope. Nevertheless, resistance is observed due to hydrophobic changes at residues including I50, V82 and I84 that line the S1/S1' pocket within the active site. Through enzyme inhibition assays and a series of 12 crystal structures, we interrogated susceptibility of DRV and two potent analogs to primary S1' mutations. The analogs had modifications at the hydrophobic P1' moiety to better occupy the unexploited space in the S1' pocket where the primary mutations were located. Considerable losses of potency were observed against protease variants with I84V and I50V mutations for all three inhibitors. The crystal structures revealed an unexpected conformational change in the flap region of I50V protease bound to the analog with the largest P1' moiety, indicating interdependency between the S1' subsite and the flap region. Collective analysis of protease-inhibitor van der Waals (vdW) interactions in the crystal structures using principle component analysis indicated I84V mutation underlying the largest variation in the vdW contacts. Interestingly, the principle components were able to distinguish inhibitor identity and relative potency solely based on vdW interactions of active site residues in the crystal structures. Our results reveal the interplay between inhibitor P1' moiety and primary S1' mutations, as well as suggesting a novel method for distinguishing the interdependence of resistance through principle component analyses.
0

Molecular and structural mechanism of pan-genotypic HCV NS3/4A protease inhibition by glecaprevir

Jennifer Timm et al.Jul 3, 2019
Hepatitis C virus (HCV), causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals (DAAs) had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes 1a, 3a, 4a and 5a in complex with GLE. Comparison with the highly similar grazoprevir (GZR) indicated the mechanism of GLEs drastic improvement in potency. We found that while GLE is highly potent against wild type NS3/4A of all genotypes, specific resistance-associated substitutions (RASs) confer orders of magnitude loss in inhibition. Our crystal structures reveal molecular mechanisms behind pan-genotypic activity of GLE, including potency loss due to RASs at D168. Our structures permit for the first time analysis of changes due to polymorphisms among genotypes, providing insights into design principles that can aid future drug development and potentially can be extended to other proteins.
1

Deciphering the Molecular Mechanism of HCV Protease Inhibitor Fluorination as a General Approach to Avoid Drug Resistance

Jacqueto Zephyr et al.Nov 30, 2021
ABSTRACT Third generation Hepatitis C virus (HCV) NS3/4A protease inhibitors (PIs), glecaprevir and voxilaprevir, are highly effective across genotypes and against many resistant variants. Unlike earlier PIs, these compounds have fluorine substitutions on the P2-P4 macrocycle and P1 moieties. Fluorination has long been used in medicinal chemistry as a strategy to improve physicochemical properties and potency. However, the molecular basis by which fluorination improves potency and resistance profile of HCV NS3/4A PIs is not well understood. To systematically analyze the contribution of fluorine substitutions to inhibitor potency and resistance profile, we used a multi-disciplinary approach involving inhibitor design and synthesis, enzyme inhibition assays, co-crystallography, and structural analysis. A panel of inhibitors in matched pairs were designed with and without P4 cap fluorination, tested against WT protease and the D168A resistant variant, and a total of 22 high-resolution co-crystal structures were determined. While fluorination did not significantly improve potency against the WT protease, PIs with fluorinated P4 caps retained much better potency against the D168A protease variant. Detailed analysis of the co-crystal structures revealed that PIs with fluorinated P4 caps can sample alternate binding conformations that enable adapting to structural changes induced by the D168A substitution. Our results elucidate molecular mechanisms of fluorine-specific inhibitor interactions that can be leveraged in avoiding drug resistance.