RT
Richard Timms
Author with expertise in Ubiquitin-Proteasome Proteolytic Pathway
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
634
h-index:
22
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity

Ellen Shrock et al.Sep 29, 2020
+97
T
E
E
Profiling coronaviruses Among the coronaviruses that infect humans, four cause mild common colds, whereas three others, including the currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), result in severe infections. Shrock et al. used a technology known as VirScan to probe the antibody repertoires of hundreds of coronavirus disease 2019 (COVID-19) patients and pre–COVID-19 era controls. They identified hundreds of antibody targets, including several antibody epitopes shared by the mild and severe coronaviruses and many specific to SARS-CoV-2. A machine-learning model accurately classified patients infected with SARS-CoV-2 and guided the design of an assay for rapid SARS-CoV-2 antibody detection. The study also looked at how the antibody response and viral exposure history differ in patients with diverging outcomes, which could inform the production of improved vaccine and antibody therapies. Science , this issue p. eabd4250
0
Citation631
0
Save
0

Competition between two HUSH complexes orchestrates the immune response to retroelement invasion

Joshua Danac et al.Jul 15, 2024
+5
A
R
J
The human silencing hub (HUSH) preserves genome integrity through the epigenetic repression of invasive genetic elements. However, despite our understanding of HUSH as an obligate complex of three subunits, only loss of MPP8 or Periphilin, but not TASOR, triggers interferon signaling following derepression of endogenous retroelements. Here, we resolve this paradox by characterizing a second HUSH complex that shares MPP8 and Periphilin but assembles around TASOR2, an uncharacterized paralog of TASOR. Whereas HUSH represses LINE-1 retroelements marked by the repressive histone modification H3K9me3, HUSH2 is recruited by the transcription factor IRF2 to repress interferon-stimulated genes. Mechanistically, HUSH-mediated retroelement silencing sequesters the limited pool of the shared subunits MPP8 and Periphilin, preventing TASOR2 from forming HUSH2 complexes and hence relieving the HUSH2-mediated repression of interferon-stimulated genes. Thus, competition between two HUSH complexes intertwines retroelement silencing with the induction of an immune response, coupling epigenetic and immune aspects of genome defense.
0
Citation2
0
Save
0

Dipeptidyl peptidases and E3 ligases of N-degron pathways cooperate to regulate protein stability

Adi Shimshon et al.Jun 14, 2024
+6
M
K
A
N-degrons are short sequences located at protein N-terminus that mediate the interaction of E3 ligases (E3s) with substrates to promote their proteolysis. It is well established that N-degrons can be exposed following protease cleavage to allow recognition by E3s. However, our knowledge regarding how proteases and E3s cooperate in protein quality control mechanisms remains minimal. Using a systematic approach to monitor the protein stability of an N-terminome library, we found that proline residue at the third N-terminal position (hereafter “P+3”) promotes instability. Genetic perturbations identified the dipeptidyl peptidases DPP8 and DPP9 and the primary E3s of N-degron pathways, UBR proteins, as regulators of P+3 bearing substrate turnover. Interestingly, P+3 UBR substrates are significantly enriched for secretory proteins. We found that secretory proteins relying on a signal peptide (SP) for their targeting contain a “built-in” N-degron within their SP. This degron becomes exposed by DPP8/9 upon translocation failure to the designated compartments, thus enabling clearance of mislocalized proteins by UBRs to maintain proteostasis.
0
Citation1
0
Save
0

Neuropathic mutations in MORC2 perturb GHKL ATPase dimerization dynamics and epigenetic silencing by multiple structural mechanisms

Christopher Douse et al.Oct 2, 2017
+5
Y
S
C
Missense mutations in MORC2 cause neuropathies including spinal muscular atrophy and Charcot-Marie-Tooth disease. We recently identified MORC2 as an effector of epigenetic silencing by the HUSH complex. Here we report the biochemical and cellular activities of MORC2 variants, alongside crystal structures of wild-type and neuropathic forms of a human MORC2 fragment comprising the GHKL-type ATPase module and CW-type zinc finger. This fragment dimerizes upon binding ATP and contains a hinged, functionally critical coiled coil insertion absent in other GHKL ATPases. We find that dimerization and DNA binding of the MORC2 ATPase module transduce HUSH-dependent silencing. Disease mutations change the dynamics of dimerization by distinct structural mechanisms: destabilizing the ATPase-CW module, trapping the ATP lid or perturbing the dimer interface. These defects lead to modulation of HUSH function, thus providing a molecular basis for understanding MORC2-associated neuropathies.
0

TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control

Christopher Douse et al.Mar 11, 2020
+10
R
I
C
The Human Silencing Hub (HUSH) complex epigenetically represses retroviruses, transposons and genes in vertebrates. HUSH therefore maintains genome integrity and is central in the interplay between intrinsic immunity, transposable elements and transcriptional regulation. Comprising three subunits - TASOR, MPP8 and Periphilin - HUSH regulates SETDB1-dependent deposition of the transcriptionally repressive epigenetic mark H3K9me3 and recruits MORC2 to modify local chromatin structure. However the mechanistic roles of each HUSH subunit remain undetermined. Here we show that TASOR lies at the heart of HUSH, providing a platform for assembling the other subunits. Targeted epigenomic profiling supports the model that TASOR binds and regulates H3K9me3 specifically over LINE-1 repeats and other repetitive exons in transcribed genes. We find TASOR associates with several components of the nuclear RNA processing machinery and its modular domain architecture bears striking similarities to that of Chp1, the central component of the yeast RNA-induced transcriptional silencing (RITS) complex. Together these observations suggest that an RNA intermediate may be important for HUSH activity. We identify the TASOR domains necessary for HUSH assembly and transgene repression. Structural and genomic analyses reveal that TASOR contains a poly-ADP ribose polymerase (PARP) domain dispensable for assembly and chromatin localization, but critical for epigenetic regulation of target elements. This domain contains a degenerated and obstructed active site and has hence lost catalytic activity. Together our data demonstrate that TASOR is a pseudo-PARP critical for HUSH complex assembly and H3K9me3 deposition over its genomic targets.
0

Periphilin self-association underpins epigenetic silencing by the HUSH complex

Daniil Prigozhin et al.Dec 19, 2019
+8
C
A
D
Transcription of integrated DNA from viruses or transposable elements is tightly regulated to prevent pathogenesis. The Human Silencing Hub (HUSH), composed of Periphilin, TASOR and MPP8, silences transcriptionally active viral and endogenous transgenes. HUSH recruits effectors that alter the epigenetic landscape and chromatin structure, but how HUSH recognizes target loci and represses their expression remains unclear. We identify the physicochemical properties of Periphilin necessary for HUSH assembly and silencing. A disordered N-terminal domain (NTD) and structured C-terminal domain are essential for silencing. A crystal structure of the Periphilin-TASOR core complex shows Periphilin forms α-helical homodimers, which each bind a single TASOR molecule. The NTD binds RNA non-specifically and forms insoluble aggregates through an arginine/tyrosine-rich sequence reminiscent of low-complexity regions from self-associating RNA-binding proteins. Residues required for TASOR binding and aggregation were required for HUSH-dependent silencing and genome-wide deposition of repressive mark H3K9me3. The NTD was functionally complemented by low-complexity regions from certain RNA-binding proteins and proteins that form condensates or fibrils. Our work suggests the associative properties of Periphilin promote HUSH aggregation on nascent transcripts.
0

Loss-of-function mutations in the dystonia gene THAP1 impair proteasome function by inhibiting PSMB5 expression

David Ramage et al.Jun 13, 2024
R
D
D
ABSTRACT The 26S proteasome is a multi-catalytic protease that serves as the endpoint for protein degradation via the ubiquitin-proteasome system. Proteasome function requires the concerted activity of 33 distinct gene products, but how the expression of proteasome subunits is regulated in mammalian cells remains poorly understood. Leveraging coessentiality data from the DepMap project, here we characterize an essential role for the dystonia gene THAP1 in maintaining the basal expression of PSMB5 . PSMB5 insufficiency resulting from loss of THAP1 leads to defects in proteasome assembly, impaired proteostasis and cell death. Exploiting the fact that the toxicity associated with loss of THAP1 can be rescued upon exogenous expression of PSMB5, we define the transcriptional targets of THAP1 through RNA-seq analysis and perform a deep mutational scan to systematically assess the function of thousands of single amino acid THAP1 variants. Altogether, these data identify THAP1 as a critical regulator of proteasome function and suggest that aberrant proteostasis may contribute to the pathogenesis of THAP1 dystonia.
0

The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1

Sam Menzies et al.Aug 14, 2018
+4
D
N
S
HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the cholesterol biosynthetic pathway and the therapeutic target of statins, is post-transcriptionally regulated by sterol-accelerated degradation. Under cholesterol-replete conditions, HMGCR is ubiquitinated and degraded, but the identity of the E3 ubiquitin ligase(s) responsible for mammalian HMGCR turnover remains controversial. Using systematic, unbiased CRISPR/Cas9 genome-wide screens with a sterol-sensitive endogenous HMGCR reporter, we comprehensively map the E3 ligase landscape required for sterol-accelerated HMGCR degradation. We find that RNF145 and gp78, independently co-ordinate HMGCR ubiquitination and degradation. RNF145, a sterol-responsive ER-resident E3 ligase, is unstable but accumulates following sterol depletion. Sterol addition triggers RNF145 recruitment to HMGCR and Insig-1, promoting HMGCR ubiquitination and proteasome-mediated degradation. In the absence of both RNF145 and gp78, Hrd1, a third UBE2G2-dependent ligase partially regulates HMGCR activity. Our findings reveal a critical role for the sterol-responsive RNF145 in HMGCR regulation and elucidate the complexity of sterol-accelerated HMGCR degradation.