BV
Benjamin Voight
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
60
(88% Open Access)
Cited by:
33,631
h-index:
91
/
i10-index:
168
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Map of Recent Positive Selection in the Human Genome

Benjamin Voight et al.Feb 22, 2006
The identification of signals of very recent positive selection provides information about the adaptation of modern humans to local conditions. We report here on a genome-wide scan for signals of very recent positive selection in favor of variants that have not yet reached fixation. We describe a new analytical method for scanning single nucleotide polymorphism (SNP) data for signals of recent selection, and apply this to data from the International HapMap Project. In all three continental groups we find widespread signals of recent positive selection. Most signals are region-specific, though a significant excess are shared across groups. Contrary to some earlier low resolution studies that suggested a paucity of recent selection in sub-Saharan Africans, we find that by some measures our strongest signals of selection are from the Yoruba population. Finally, since these signals indicate the existence of genetic variants that have substantially different fitnesses, they must indicate loci that are the source of significant phenotypic variation. Though the relevant phenotypes are generally not known, such loci should be of particular interest in mapping studies of complex traits. For this purpose we have developed a set of SNPs that can be used to tag the strongest ∼250 signals of recent selection in each population.
0
Citation2,801
0
Save
0

New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

Josée Dupuis et al.Jan 17, 2010
The MAGIC investigators report results of a large genome-wide association study meta-analysis to identify common variants influencing fasting glucose homeostasis. They further show that several of the newly discovered loci influencing glycemic traits are also associated with risk of type 2 diabetes. Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
0
Citation2,134
0
Save
0

Hundreds of variants clustered in genomic loci and biological pathways affect human height

Hana Allen et al.Sep 29, 2010
A genome-wide association (GWA) study of more than 180,000 individuals has identified hundreds of genetic variants in at least 180 loci associated with adult human height. The loci are not clustered randomly but are enriched for genes involved in growth-related processes that influence adult height. This demonstrates that GWA studies of common human traits, and therefore of many diseases, can identify large numbers of loci that implicate potential causal genes. This very large genome-wide association study identifies hundreds of new genetic variants influencing adult height in at least 180 loci enriched for genes involved in skeletal growth defects. The results show that the likely causal gene is often located near the most strongly associated variant, that many loci have multiple independently associated variants and that associated variants are enriched for likely functional effects on genes. Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
0
Citation1,934
0
Save
0

Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

Benjamin Voight et al.Jun 27, 2010
Mark McCarthy and colleagues identify twelve new risk loci for type 2 diabetes through a large-scale genome-wide association and replication study in individuals of European ancestry. The identified loci affect both beta-cell function and insulin action and are enriched for genes involved in cell cycle regulation. By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
0
Citation1,756
0
Save
0

Patterns and rates of exonic de novo mutations in autism spectrum disorders

Benjamin Neale et al.Apr 3, 2012
Exome sequencing of 175 autism spectrum disorder parent–child trios reveals that few de novo point mutations have a role in autism spectrum disorder and those that do are distributed across many genes and are incompletely penetrant, further supporting extreme genetic heterogeneity of this spectrum disorder. Although it is well accepted that genetics makes a strong contribution to autism spectrum disorder, most of the underlying causes of the condition remain unknown. Three groups present large-scale exome-sequencing studies of individuals with sporadic autism spectrum disorder, including many parent–child trios and unaffected siblings. The overall message from the three papers is that there is extreme locus heterogeneity among autistic individuals, with hundreds of genes involved in the condition, and with no single gene contributing to more than a small fraction of cases. Sanders et al. report the association of the gene SCN2A, previously identified in epilepsy syndromes, with the risk of autism. Neale et al. find strong evidence that CHD8 and KATNAL2 are autism risk factors. O'Roak et al. observe that a large proportion of the mutated proteins have crucial roles in fundamental developmental pathways, including β-catenin and p53 signalling. Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes3 as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case–control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.
0
Citation1,708
0
Save
0

Common variants at 30 loci contribute to polygenic dyslipidemia

Sekar Kathiresan et al.Dec 7, 2008
Sekar Kathiresan et al. report genome-wide association studies for polygenic dyslipidemia. From a meta-analysis of seven genome-wide association studies and follow-up in five replication studies, they identify 11 new genetic associations for LDL cholesterol, HDL cholesterol and triglycerides. Blood low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglyceride levels are risk factors for cardiovascular disease. To dissect the polygenic basis of these traits, we conducted genome-wide association screens in 19,840 individuals and replication in up to 20,623 individuals. We identified 30 distinct loci associated with lipoprotein concentrations (each with P < 5 × 10−8), including 11 loci that reached genome-wide significance for the first time. The 11 newly defined loci include common variants associated with LDL cholesterol near ABCG8, MAFB, HNF1A and TIMD4; with HDL cholesterol near ANGPTL4, FADS1-FADS2-FADS3, HNF4A, LCAT, PLTP and TTC39B; and with triglycerides near AMAC1L2, FADS1-FADS2-FADS3 and PLTP. The proportion of individuals exceeding clinical cut points for high LDL cholesterol, low HDL cholesterol and high triglycerides varied according to an allelic dosage score (P < 10−15 for each trend). These results suggest that the cumulative effect of multiple common variants contributes to polygenic dyslipidemia.
0
Citation1,338
0
Save
Load More