VN
Vanessa Nunes
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
6
h-index:
4
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mechanosensitive nuclear asymmetries define a bipolar spindle scaffold to ensure mitotic fidelity

Vanessa Nunes et al.Jan 21, 2019
+8
D
M
V
Abstract During prophase, centrosomes need to separate and position to correctly assemble the mitotic spindle. This process occurs through the action of molecular motors, cytoskeletal networks and the nucleus. How the combined activity of these different components is spatiotemporally regulated to ensure efficient spindle assembly remains unclear. Here we show that during prophase the centrosomes-nucleus axis reorients, so that centrosomes are positioned on the shortest nuclear axis at nuclear envelope (NE) breakdown. This centrosomes-nucleus configuration depends on mechanical cues generated by mitotic chromosome condensation on the prophase nucleus. We further show these mechanosensitive cues act through SUN1/2 and NudE+NudEL to enable the polarized loading of Dynein on the NE. Finally, we observe this centrosome configuration favors the establishment of an initial bipolar spindle scaffold, facilitating chromosome capture and accurate segregation, without compromising division plane orientation. We propose that chromosome segregation fidelity depends on the mechanical properties of the prophase nucleus that facilitate spindle assembly by regulating NE-Dynein localization.
0
Citation4
0
Save
19

Trackosome: a computational toolbox to study the spatiotemporal dynamics of centrosomes, nuclear envelope and cellular membrane

Domingos Castro et al.Apr 28, 2020
+2
J
V
D
Abstract During the initial stages of mitosis, multiple mechanisms drive centrosome separation and positioning. How they are functionally coordinated to promote centrosome migration to opposite sides of the nucleus remains unclear. Imaging analysis software has been used to quantitatively study centrosome dynamics at this stage. However, available tracking tools are generic and not fine-tuned for the constrains and motion dynamics of centrosome pairs. Such generality limits the tracking performance and may require exhaustive optimization of parameters. Here, we present Trackosome, a freely available open-source computational tool to track the centrosomes and reconstruct the nuclear and cellular membranes, based on volumetric live-imaging data. The toolbox runs in MATLAB and provides a graphical user interface for easy and efficient access to the tracking and analysis algorithms. It outputs key metrics describing the spatiotemporal relations between centrosomes, nucleus and cellular membrane. Trackosome can also be used to measure the dynamic fluctuations of the nuclear envelope. A fine description of these fluctuations is important because they are correlated with the mechanical forces exerted on the nucleus by its adjacent cytoskeletal structures. Unlike previous algorithms based on circular/elliptical approximations of the nucleus, Trackosome measures membrane movement in a model-free condition, making it viable for irregularly shaped nuclei. Using Trackosome, we demonstrate significant correlations between the movements of the two centrosomes, and identify specific modes of oscillation of the nuclear envelope. Overall, Trackosome is a powerful tool to help unravel new elements in the spatiotemporal dynamics of subcellular structures.
19
Citation2
0
Save
0

Horizontal gene transfer-initiated reorganization of lipid metabolism drives lifestyle innovation in a eukaryote

Bhagyashree Rao et al.Aug 21, 2024
+6
M
E
B
Abstract Horizontal gene transfer is a source of metabolic innovation and adaptation to new environments. Yet, how horizontally transferred metabolic functionalities are integrated into host cell biology remains an open question. Here, we use the fission yeast Schizosaccharomyces japonicus to probe how eukaryotic lipid metabolism is rewired in response to the acquisition of a horizontally transferred squalene-hopene cyclase Shc1. We show that Shc1-dependent production of hopanoids, the structural mimics of eukaryotic sterols, allows S. japonicus to thrive in anoxia, where sterol biosynthesis is not possible. We further demonstrate that glycerophospholipid fatty acyl asymmetry, prevalent in S. japonicus, is crucial for accommodating both sterols and hopanoids in membranes, and explain how Shc1 functions alongside the native sterol biosynthetic pathway to support membrane properties. Through engineering experiments in the sister species S. pombe, which naturally lacks Shc1, we show that the acquisition of Shc1 may entail new physiological traits; however, to maximize Shc1 performance, sterol biosynthesis must be dampened. Our work sheds new light on the mechanisms underlying cellular integration of horizontally transferred genes in eukaryotes and provides broader insights into the evolution of membrane organization and function.