IH
Inga Holmdahl
Author with expertise in Malaria
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
413
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential

W. Shaw et al.Mar 25, 2020
+7
N
D
W
Abstract Many mosquito species, including the major malaria vector Anopheles gambiae , naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite’s extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.25 ± 0.39 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R 0 , and find the average R 0 is remarkably higher (range: 10.1%–12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions. Significance Statement In natural settings the female Anopheles gambiae mosquito, the major malaria vector, blood feeds multiple times in her lifespan. Here we demonstrate that an additional blood feed accelerates the growth of Plasmodium falciparum malaria parasites in this mosquito. Incorporating these data into a mathematical model across sub-Saharan Africa reveals that malaria transmission potential is likely to be substantially higher than previously thought, making disease elimination more difficult. Additionally, we show that control strategies that manipulate mosquito reproduction with the aim of suppressing Anopheles populations may inadvertently favor malaria transmission. Our data also suggest that parasites can be transmitted by younger mosquitoes, which are less susceptible to insecticide killing, with negative implications for the success of insecticide-based strategies.
0
Citation4
0
Save
0

Differential impact of COVID-19 non-pharmaceutical interventions on the epidemiological dynamics of respiratory syncytial virus subtypes A and B

Inga Holmdahl et al.Jun 24, 2024
+6
R
S
I
Abstract Nonpharmaceutical interventions (NPIs) implemented during the COVID-19 pandemic have disrupted the dynamics of respiratory syncytial virus (RSV) on a global scale; however, the cycling of RSV subtypes in the pre- and post-pandemic period remains poorly understood. Here, we used a two subtype RSV model supplemented with epidemiological data to study the impact of NPIs on the two circulating subtypes, RSV-A and RSV-B. The model is calibrated to historic RSV subtype data from the United Kingdom and Finland and predicts a tendency for RSV-A dominance over RSV-B immediately following the implementation of NPIs. Using a global genetic dataset, we confirm that RSV-A has prevailed over RSV-B in the post-pandemic period, consistent with a higher R 0 for RSV-A. With new RSV infant monoclonals and maternal and elderly vaccines becoming widely available, these results may have important implications for understanding intervention effectiveness in the context of disrupted subtype dynamics.
0
Citation2
0
Save
1

Accounting for heterogeneity in wild adult samples to measure insecticide resistance in Anopheles malaria vectors

Inga Holmdahl et al.Aug 13, 2021
L
C
I
Abstract Background Systematic, long-term, and spatially representative monitoring of insecticide resistance in mosquito populations is urgently needed to quantify its impact on malaria transmission, and to combat failing interventions when resistance emerges. Resistance assays on wild-caught adult mosquitoes (known as adult-capture) offer an alternative to the current protocols, and can be done cheaply, in a shorter time frame, and in the absence of an insectary. However, quantitative assessments of the performance of these assays relative to the gold standard, which involves rearing larvae in an insectary, are lacking. Methodology/Principal findings We developed a discrete-time deterministic mosquito lifecycle model to simulate insecticide resistance assays from adult-captured mosquito collection in a heterogeneous environment compared to the gold standard larval capture methods, and to quantify possible biases in the results. We incorporated non-lethal effects of insecticide exposure that have been demonstrated in laboratory experiments, spatial structure, and the impact of multiple exposure to insecticides and natural ageing on mosquito death rates during the assay. Using output from this model, we compared the results of these assays to true resistance as measured by the presence of the resistance allele. In simulated samples of 100 test mosquitoes, reflecting WHO-recommended sample sizes, we found that compared to adult-captured assays (MSE = 0.0059), larval-captured assays were a better measure of true resistance (MSE = 0.0018). Using a correction model, we were able to improve the accuracy of the adult-captured assay results (MSE = 0.0038). Bias in the adult-capture assays was dependent on the level of insecticide resistance rather than coverage of bed nets or spatial structure. Conclusions/Significance Using adult-captured mosquitoes for resistance assays has logistical advantages over the standard larval-capture collection, and may be a more accurate sample of the mosquito population. These results show that adult-captured assays can be improved using a simple mathematical approach and used to inform resistance monitoring programs. Author Summary Growing insecticide resistance in the mosquitoes that transmit malaria necessitates more widespread monitoring. Conducting assays on mosquitoes captured as adults is logistically simpler than raising them from eggs or larvae, the current recommended practice. However, this method is not widely used because survival when exposed to insecticide is known to depend on age and history of previous history as well as genetic resistance–factors that cannot be controlled when testing wild-caught adults. Here, we developed a mathematical model to quantify the difference in resistance measured via adult-capture assays compared to the gold standard larval-capture assays. We find that adult-capture assay results can be easily corrected using a formula based only on the measured resistance. This result has the potential to expand access to monitoring by reducing the time and infrastructure required to conduct these tests.