KG
Kevin Grove
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
4,219
h-index:
53
/
i10-index:
115
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis

Michael Cowley et al.Feb 1, 2003
+18
K
N
M

Abstract

 The gastrointestinal peptide hormone ghrelin stimulates appetite in rodents and humans via hypothalamic actions. We discovered expression of ghrelin in a previously uncharacterized group of neurons adjacent to the third ventricle between the dorsal, ventral, paraventricular, and arcuate hypothalamic nuclei. These neurons send efferents onto key hypothalamic circuits, including those producing neuropeptide Y (NPY), Agouti-related protein (AGRP), proopiomelanocortin (POMC) products, and corticotropin-releasing hormone (CRH). Within the hypothalamus, ghrelin bound mostly on presynaptic terminals of NPY neurons. Using electrophysiological recordings, we found that ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH). We propose that at these sites, release of ghrelin may stimulate the release of orexigenic peptides and neurotransmitters, thus representing a novel regulatory circuit controlling energy homeostasis.
0

The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss

Anna Secher et al.Sep 8, 2014
+13
A
J
A
Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1–producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r–/– mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.
0
Citation709
0
Save
0

Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates

Carrie McCurdy et al.Jan 15, 2009
+4
S
J
C
Maternal obesity is thought to increase the offspring's risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and obese mothers chronically consuming a HFD had a 3-fold increase in liver triglycerides (TGs). In addition, fetal offspring from HFD-fed mothers (O-HFD) showed increased evidence of hepatic oxidative stress early in the third trimester, consistent with the development of nonalcoholic fatty liver disease (NAFLD). O-HFD animals also exhibited elevated hepatic expression of gluconeogenic enzymes and transcription factors. Furthermore, fetal glycerol levels were 2-fold higher in O-HFD animals than in control fetal offspring and correlated with maternal levels. The increased fetal hepatic TG levels persisted at P180, concurrent with a 2-fold increase in percent body fat. Importantly, reversing the maternal HFD to a low-fat diet during a subsequent pregnancy improved fetal hepatic TG levels and partially normalized gluconeogenic enzyme expression, without changing maternal body weight. These results suggest that a developing fetus is highly vulnerable to excess lipids, independent of maternal diabetes and/or obesity, and that exposure to this may increase the risk of pediatric NAFLD.
0
Citation569
0
Save
0

Diet-Induced Obesity Causes Severe but Reversible Leptin Resistance in Arcuate Melanocortin Neurons

Pablo Enriori et al.Mar 1, 2007
+9
P
A
P
Despite high leptin levels, most obese humans and rodents lack responsiveness to its appetite-suppressing effects. We demonstrate that leptin modulates NPY/AgRP and α-MSH secretion from the ARH of lean mice. High-fat diet-induced obese (DIO) mice have normal ObRb levels and increased SOCS-3 levels, but leptin fails to modulate peptide secretion and any element of the leptin signaling cascade. Despite this leptin resistance, the melanocortin system downstream of the ARH in DIO mice is over-responsive to melanocortin agonists, probably due to upregulation of MC4R. Lastly, we show that by decreasing the fat content of the mouse's diet, leptin responsiveness of NPY/AgRP and POMC neurons recovered simultaneously, with mice regaining normal leptin sensitivity and glycemic control. These results highlight the physiological importance of leptin sensing in the melanocortin circuits and show that their loss of leptin sensing likely contributes to the pathology of leptin resistance.
0

Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome

Kjersti Aagaard‐Tillery et al.May 29, 2008
+4
J
K
K
Chromatin structure is epigenetically altered via covalent modifications of histones to allow for heritable gene regulation without altering the nucleotide sequence. Multiple lines of evidence from rodents have established a role for epigenetic remodeling in regulating gene transcription in response to an altered gestational milieu. However, to date, it is unknown whether variations in the intrauterine environment in primates similarly induce changes in key determinants of hepatic chromatin structure. We hypothesized that a maternal high-fat diet would alter the epigenomic profile of the developing offspring, which would result in alterations in fetal gene expression. Age- and weight-matched adult female Japanese macaques were placed on control (13% fat) or high-fat (35% fat) breeder diets and mated annually over a 4-year interval. Fetuses in successive years were delivered near term (e130 of 167 days) and underwent necropsy with tissue harvest. Fetal histones were acid extracted for characterization of H3 modification and chromatin immunoprecipitation (ChIP) with differential display PCR; fetal RNA, DNA, and cytoplasmic and nuclear protein extracts were similarly extracted for comparison. Chronic consumption of a maternal high-fat diet results in a threefold increase in fetal liver triglycerides and histologic correlates of non-alcoholic fatty liver disease. These gross changes in the fetal liver are accompanied by a statistically significant hyperacetylation of fetal hepatic tissue at H3K14 (199.85±9.64 vs 88.8±45.4; P =0.038) with a trend towards the increased acetylation at H3K9 (140.9±38.7 vs 46.6±6.53; P =0.097) and at H3K18 (69.0±3.54 vs 58.0±4.04; P =0.096). However, epigenetic modifications on fetal hepatic H3 associated with gene repression were absent or subtle ( P >0.05). Subsequent characterization of key epigenetic determinants associated with H3 acetylation marks revealed similar significant alterations in association with a high-fat maternal diet (e.g., relative fetal histone deacetylase 1 (HDAC1) gene expression 0.61±0.25; P =0.011). Consistent with our mRNA expression profile, fetal nuclear extracts from offspring of high-fat diet animals were observed to be significantly relatively deplete of HDAC1 protein (36.07±6.73 vs 83.18±7.51; P =0.006) and in vitro HDAC functional activity (0.252±0.03 vs 0.698±0.02; P <0.001). We employ these observations in ChIP differential display PCR to attempt to identify potential fetal genes whose expression is reprogramed under conditions of a high-fat maternal diet. We quantitatively confirm a minimum of a 40% alteration in the expression of several genes of interest: glutamic pyruvate transaminase (alanine aminotransferase) 2 ( GPT2 ) (1.59±0.23-fold; P =0.08), DNAJA2 (1.36±0.21; P =0.09), and Rdh12 (1.88±0.15; P =0.01) are appreciably increased in fetal hepatic tissue from maternal caloric-dense diet animals when compared with control while Npas2 , a peripheral circadian regulator, was significantly downmodulated in the offspring of high-fat diet animals (0.66±0.08; P =0.03). In this study, we show that a current significant in utero exposure (caloric-dense high-fat maternal diet) induces site-specific alterations in fetal hepatic H3 acetylation. Employing ChIP, we extend these observations to link modifications of H3 acetylation with alterations in gene-specific expression. These results suggest that a caloric-dense maternal diet leading to obesity epigenetically alters fetal chromatin structure in primates via covalent modifications of histones and hence lends a molecular basis to the fetal origins of adult disease hypothesis.
0
Citation412
0
Save
0

High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model

Jun Ma et al.May 20, 2014
+8
D
A
J
The intestinal microbiome is a unique ecosystem and an essential mediator of metabolism and obesity in mammals. However, studies investigating the impact of the diet on the establishment of the gut microbiome early in life are generally lacking, and most notably so in primate models. Here we report that a high-fat maternal or postnatal diet, but not obesity per se, structures the offspring’s intestinal microbiome in Macaca fuscata (Japanese macaque). The resultant microbial dysbiosis is only partially corrected by a low-fat, control diet after weaning. Unexpectedly, early exposure to a high-fat diet diminished the abundance of non-pathogenic Campylobacter in the juvenile gut, suggesting a potential role for dietary fat in shaping commensal microbial communities in primates. Our data challenge the concept of an obesity-causing gut microbiome and rather provide evidence for a contribution of the maternal diet in establishing the microbiota, which in turn affects intestinal maintenance of metabolic health. The influence of diet on the establishment of gut microbiota early in life is poorly understood. Here the authors show, in a primate model, that maternal diet during pregnancy affects the offspring’s microbiome, and that dietary intervention after weaning only partially reverses this effect.
0
Citation394
0
Save
114

Single-cell dissection of obesity-exercise axis in adipose-muscle tissues

Jiekun Yang et al.Nov 23, 2021
+12
M
J
J
Abstract Regular physical exercise has long been recognized to reverse the effects of diet-induced obesity, but the molecular mechanisms mediating these multi-tissue beneficial effects remain uncharacterized. Here, we address this challenge by studying the opposing effects of exercise training and high-fat diet at single-cell, deconvolution and tissue-level resolutions across 3 metabolic tissues. We profile scRNA-seq in 204,883 cells, grouped into 53 distinct cell subtypes/states in 22 major cell types, from subcuta-neous and visceral white adipose tissue (WAT), and skeletal muscle (SkM) in mice with diet and exercise training interventions. With a great number of mesenchymal stem cells (MSCs) profiled, we compared depot-specific adipose stem cell (ASC) states, and defined 7 distinct fibro-adipogenic progenitor (FAP) states in SkM including discovering and validating a novel CD140+/CD34+/SCA1-FAP population. Exercise- and obesity-regulated proportion, transcriptional and cell-cell interaction changes were most strongly pronounced in and centered around ASCs, FAPs, macrophages and T-cells. These changes reflected thermogenesis-vs-lipogenesis and hyperplasia-vs-hypertrophy shifts, clustered in pathways including extracellular matrix remodeling and circadian rhythm, and implicated complex single- and multi-tissue communication including training-associated shift of a cytokine from binding to its decoy receptor on ASCs to true receptor on M2 macrophages in vWAT. Overall, our work provides new insights on the metabolic protective effects of exercise training, uncovers a previously-underappreciated role of MSCs in mediating tissue-specific and multi-tissue effects, and serves as a model for multitissue single-cell analyses in physiologically complex and multifactorial traits exemplified by obesity and exercise training.
114
Citation3
0
Save
1

Cellular intelligence: dynamic specialization through non-equilibrium multi-scale compartmentalization

Rémy Tuyéras et al.Jun 26, 2021
+5
S
L
R
Abstract Intelligence is usually associated with the ability to perceive, retain and use information to adapt to changes in one’s environment. In this context, systems of living cells can be thought of as intelligent entities. Here, we show that the concepts of non-equilibrium tuning and compartmentalization are sufficient to model manifestations of cellular intelligence such as specialization, division, fusion and communication using the language of operads. We implement our framework as an unsupervised learning algorithm, I nt C yt , which we show is able to memorize, organize and abstract reference machine-learning datasets through generative and self-supervised tasks. Overall, our learning framework captures emergent properties programmed in living systems, and provides a powerful new approach for data mining. Structured abstract Background Although intelligence has been given many definitions, we can associate it with the ability to perceive, retain, and use information to adapt to changes in one’s environment. In this context, systems of living cells can be thought of as intelligent entities. While one can reasonably describe their adaptive abilities within the realm of homeostatic mechanisms, it is challenging to comprehend the principles governing their metabolic intelligence. In each organism, cells have indeed developed as many ways to adapt as there are cell types, and elucidating the impetus of their evolutionary behaviors could be the key to understanding life processes and likely diseases. Advances The goal of this article is to propose principles for understanding cellular intelligence. Specifically, we show that the concepts of non-equilibrium tuning and compartmentalization are enough to recover cellular adaptive behaviors such as specialization, division, fusion, and communication. Our model has the advantage to encompass all scales of life, from organelles to organisms through systems of organs and cell assemblies. We achieve this flexibility using the language of operads, which provides an elegant framework for reasoning about nested systems and, as an emergent behavior, non-equilibrium compartmentalization. To demonstrate the validity and the practical utility of our model, we implement it in the form of an unsupervised learning algorithm, I nt C yt , and apply it to reference machine learning datasets through generative and self-supervised tasks. We find that I nt C yt ’s interpretability, plasticity and accuracy surpass that of a wide range of machine learning algorithms, thus providing a powerful approach for data mining. Outlook Our results indicate that the nested hierarchical language of operads captures the emergent properties of programmed cellular metabolism in the development of living systems, and provide a new biologically-inspired, yet practical and lightweight, computational paradigm for memorizing, organizing and abstracting datasets.
58

Metabolic resilience is encoded in genome plasticity

Leandro Agudelo et al.Jun 27, 2021
+13
C
R
L
Abstract Metabolism plays a central role in evolution, as resource conservation is a selective pressure for fitness and survival. Resource-driven adaptations offer a good model to study evolutionary innovation more broadly. It remains unknown how resource-driven optimization of genome function integrates chromatin architecture with transcriptional phase transitions. Here we show that tuning of genome architecture and heterotypic transcriptional condensates mediate resilience to nutrient limitation. Network genomic integration of phenotypic, structural, and functional relationships reveals that fat tissue promotes organismal adaptations through metabolic acceleration chromatin domains and heterotypic PGC1A condensates. We find evolutionary adaptations in several dimensions; low conservation of amino acid residues within protein disorder regions, nonrandom chromatin location of metabolic acceleration domains, condensate-chromatin stability through cis-regulatory anchoring and encoding of genome plasticity in radial chromatin organization. We show that environmental tuning of these adaptations leads to fasting endurance, through efficient nuclear compartmentalization of lipid metabolic regions, and, locally, human-specific burst kinetics of lipid cycling genes. This process reduces oxidative stress, and fatty-acid mediated cellular acidification, enabling endurance of condensate chromatin conformations. Comparative genomics of genetic and diet perturbations reveal mammalian convergence of phenotype and structural relationships, along with loss of transcriptional control by diet-induced obesity. Further, we find that radial transcriptional organization is encoded in functional divergence of metabolic disease variant-hubs, heterotypic condensate composition, and protein residues sensing metabolic variation. During fuel restriction, these features license the formation of large heterotypic condensates that buffer proton excess, and shift viscoelasticity for condensate endurance. This mechanism maintains physiological pH, reduces pH-resilient inflammatory gene programs, and enables genome plasticity through transcriptionally driven cell-specific chromatin contacts. In vivo manipulation of this circuit promotes fasting-like adaptations with heterotypic nuclear compartments, metabolic and cell-specific homeostasis. In sum, we uncover here a general principle by which transcription uses environmental fluctuations for genome function, and demonstrate how resource conservation optimizes transcriptional self-organization through robust feedback integrators, highlighting obesity as an inhibitor of genome plasticity relevant for many diseases.