SK
Saber Khederzadeh
Author with expertise in Genetic Architecture of Quantitative Traits
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Integrating Genomic and Transcriptomic Data to Reveal Genetic Mechanisms Underlying Piao Chicken Rumpless Trait

Yun-Mei Wang et al.Mar 6, 2020
+11
S
S
Y
Piao chicken, a rare Chinese native poultry breed, lacks primary tail structures, such as pygostyle, caudal vertebra, uropygial gland and tail feathers. So far, the molecular mechanisms underlying tail absence in this breed have remained unclear. We employed comprehensive comparative transcriptomic and genomic analyses to unravel potential genetic underpinnings of rumplessness in the Piao chicken. Our results reveal many biological factors involved in tail development and several genomic regions under strong positive selection in this breed. These regions contain candidate genes associated with rumplessness, including IRX4 , IL-18 , HSPB2 , and CRYAB . Retrieval of quantitative trait loci (QTL) and gene functions implied that rumplessness might be consciously or unconsciously selected along with the high-yield traits in Piao chicken. We hypothesize that strong selection pressures on regulatory elements might lead to gene activity changes in mesenchymal stem cells of the tail bud and eventually result in tail truncation by impeding differentiation and proliferation of the stem cells. Our study provides fundamental insights into early initiation and genetic bases of the rumpless phenotype in Piao chicken.
6

Searching across-cohort relatives in 54,092 GWAS samples via encrypted genotype regression

Xin Huang et al.Oct 21, 2022
+25
X
Q
X
Abstract Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg , a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier. Author Summary Estimating pairwise genetic relatedness within a single cohort is straightforward. However, in practice, related samples are often distributed across different cohorts, making it challenging to estimate inter-cohort relatedness. In this study, we propose a method called encrypted genotype regression ( encG-reg ), which provides an unbiased estimation of inter-cohort relatedness using encrypted genotypes. The genotype matrix of each cohort is masked by a random matrix, which acts similarly to a private key in a cryptographic scheme. This masking process produces encrypted genotypes, which are a projection of the original genotype matrix. We derive the expectation and particularly the sampling variance for encG-reg , the latter involves eighth-order moments calculation. encG-reg allows us to accurately identify relatedness across cohorts, even for large-scale biobank data. To demonstrate the efficacy of encG-reg , we verified it in a multi-ethnicity UK Biobank dataset comprising 485,158 samples. For this case, we successfully tracked down to the 1st-degree relatedness (such as full sibs and parent-offspring). Furthermore, we used encG-reg in a collaboration involving 9 Chinese cohorts, encompassing a total of 54,092 samples from 5 genomic centers. It is worth noting that if the number of effective markers is sufficient encG-reg has the potential to detect even more distant degrees of relatedness beyond what we demonstrated.
16

Genomic analyses of 10,376 individuals provides comprehensive map of genetic variations, structure and reference haplotypes for Chinese population

Peikuan Cong et al.Feb 8, 2021
+22
J
Y
P
Abstract Here, we initiated the Westlake BioBank for Chinese (WBBC) pilot project with 4,535 whole-genome sequencing individuals and 5,481 high-density genotyping individuals. We identified 80.99 million SNPs and INDELs, of which 38.6% are novel. The genetic evidence of Chinese population structure supported the corresponding geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains. The genetic architecture within North Han was more homogeneous than South Han, and the history of effective population size of Lingnan began to deviate from the other three regions from 6 thousand years ago. In addition, we identified a novel locus ( SNX29 ) under selection pressure and confirmed several loci associated with alcohol metabolism and histocompatibility systems. We observed significant selection of genes on epidermal cell differentiation and skin development only in southern Chinese. Finally, we provided an online imputation server ( https://wbbc.westlake.edu.cn/ ) which could result in higher imputation accuracy compared to the existing panels, especially for lower frequency variants.