YL
Youjin Lee
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
2
h-index:
45
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Rapid discovery of synthetic DNA sequences to rewrite endogenous T cell circuits

Theodore Roth et al.Apr 12, 2019
ABSTRACT Genetically-engineered immune cell therapies have been in development for decades 1–3 and recently have proven effective to treat some types of cancer 4 . CRISPR-based genome editing methods, enabling more flexible and targeted sequence integrations than viral transduction, have the potential to extend the clinical utility of cell therapies 5,6 . Realization of this potential depends on improved knowledge of how coding and non-coding sites throughout the genome can be modified efficiently and on improved methods to discover novel synthetic DNA sequences that can be introduced at targeted sites to enhance critical immune cell functions. Here, we developed improved guidelines for non-viral genome targeting in human T cells and a pooled discovery platform to identify synthetic genome modifications that enhance therapeutically-relevant cell functions. We demonstrated the breadth of targetable genomic loci by performing large knock-ins at 91 different genomic sites in primary human T cells, and established the power of flexible genome targeting by generating cells with Genetically Engineered Endogenous Proteins (GEEPs) that seamlessly integrate synthetic and endogenous genetic elements to alter signaling input, output, or regulatory control of genes encoding key immune receptors. Motivated by success in introducing synthetic circuits into endogenous sites, we then developed a platform to facilitate discovery of novel multi-gene sequences that reprogram both T cell specificity and function. We knocked in barcoded pools of large DNA sequences encoding polycistronic gene programs. High-throughput pooled screening of targeted knock-ins to the endogenous T cell receptor (TCR) locus revealed a transcriptional regulator and novel protein chimeras that combined with a new TCR specificity to enhance T cell responses in the presence of suppressive conditions in vitro and in vivo . Overall, these pre-clinical studies provide flexible tools to discover complex synthetic gene programs that can be written into targeted genome sites to generate more effective therapeutic cells.
0
Citation2
0
Save
0

Discovery of an autoimmunity-associated IL2RA enhancer by unbiased targeting of transcriptional activation

Dimitre Simeonov et al.Dec 5, 2016
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell type-specific transcriptional programs and responses to specific extracellular cues1-3. In order to understand the mechanisms by which non-coding genetic variation contributes to disease, systematic mapping of functional enhancers and their biological contexts is required. Here, we develop an unbiased discovery platform that can identify enhancers for a target gene without prior knowledge of their native functional context. We used tiled CRISPR activation (CRISPRa) to synthetically recruit transcription factors to sites across large genomic regions (>100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA (interleukin-2 receptor alpha; CD25). We identified several CRISPRa responsive elements (CaREs) with stimulation-dependent enhancer activity, including an IL2RA enhancer that harbors an autoimmunity risk variant. Using engineered mouse models and genome editing of human primary T cells, we found that sequence perturbation of the disease-associated IL2RA enhancer does not block IL2RA expression, but rather delays the timing of gene activation in response to specific extracellular signals. This work develops an approach to rapidly identify functional enhancers within non-coding regions, decodes a key human autoimmunity association, and suggests a general mechanism by which genetic variation can cause immune dysfunction.
0

CRISPR Screen in Regulatory T Cells Reveals Ubiquitination Modulators of Foxp3

Jessica Cortez et al.Feb 27, 2020
Regulatory T cells (Tregs) are required to control immune responses and maintain homeostasis but are a significant barrier to anti-tumor immunity. Conversely, Treg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of pro-inflammatory properties, can promote autoimmunity and/or facilitate more effective tumor immunity. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and cancer. Despite improved functional genetic tools that now allow for systematic interrogation, dissection of the gene regulatory programs that modulate Foxp3 expression has not yet been reported. In this study, we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse Tregs and applied this technology to perform a targeted loss-of-function screen of ~490 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We discovered several novel modulators including ubiquitin-specific peptidase 22 (Usp22), Ataxin 7 like 3 (Atxn7l3) and ring finger protein 20 (Rnf20). Members of the deubiquitination module of the SAGA chromatin modifying complex, Usp22 and Atxn7l3, were discovered to be positive regulators that stabilized Foxp3 expression; whereas the screen suggested Rnf20, an E3 ubiquitin ligase, is a negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 protein and created defects in their suppressive function that led to spontaneous autoimmunity but protected against tumor growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient Tregs could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in Tregs. These results reveal novel modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for Treg immunotherapies for cancer and autoimmune disease.