DA
Dionysios Antonopoulos
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(77% Open Access)
Cited by:
8,426
h-index:
40
/
i10-index:
57
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice

Suzanne Devkota et al.Jun 12, 2012
Consumption of a diet high in milk-derived fat is shown to increase the abundance of sulphite-reducing bacteria by altering bile composition, leading to inflammation and colitis in genetically susceptible mice. Milk fat is shown here to potentiate experimental colitis in susceptible mice, in association with increased luminal concentrations of sulphite-reducing bacteria. Mice fed a diet with comparable caloric intake containing unsaturated fatty acids are protected. The inflammation is caused by milk-fat-promoted taurine conjugation with bile acids, which increases the availability of organic sulphur used by the bacteria. This finding supports the suggestion that the recent upwards trend in complex immune disorders such as inflammatory bowel diseases could reflect changes in human microbiomes elicited in genetically susceptible individuals by dietary and other environmental changes. The composite human microbiome of Western populations has probably changed over the past century, brought on by new environmental triggers that often have a negative impact on human health1. Here we show that consumption of a diet high in saturated (milk-derived) fat, but not polyunsaturated (safflower oil) fat, changes the conditions for microbial assemblage and promotes the expansion of a low-abundance, sulphite-reducing pathobiont, Bilophila wadsworthia2. This was associated with a pro-inflammatory T helper type 1 (TH1) immune response and increased incidence of colitis in genetically susceptible Il10−/− , but not wild-type mice. These effects are mediated by milk-derived-fat-promoted taurine conjugation of hepatic bile acids, which increases the availability of organic sulphur used by sulphite-reducing microorganisms like B. wadsworthia. When mice were fed a low-fat diet supplemented with taurocholic acid, but not with glycocholic acid, for example, a bloom of B. wadsworthia and development of colitis were observed in Il10−/− mice. Together these data show that dietary fats, by promoting changes in host bile acid composition, can markedly alter conditions for gut microbial assemblage, resulting in dysbiosis that can perturb immune homeostasis. The data provide a plausible mechanistic basis by which Western-type diets high in certain saturated fats might increase the prevalence of complex immune-mediated diseases like inflammatory bowel disease in genetically susceptible hosts.
0

Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases

Jennifer Brulc et al.Jan 31, 2009
The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).
0
Citation708
0
Save
0

16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis

Yunwei Wang et al.Apr 16, 2009
Abstract Neonatal necrotizing enterocolitis (NEC) is an inflammatory intestinal disorder affecting preterm infants. Intestinal bacteria have an important function; however no causative pathogen has been identified. The purpose of this study was to determine if there are differences in microbial patterns that may be critical to the development of this disease. Fecal samples from 20 preterm infants, 10 with NEC and 10 matched controls (including 4 twin pairs) were obtained from patients in a single site level III neonatal intensive care unit. Bacterial DNA from individual fecal samples was PCR-amplified and subjected to terminal restriction fragment length polymorphism analysis and library sequencing of the 16S rRNA gene to characterize diversity and structure of the enteric microbiota. The distribution of samples from NEC patients distinctly clustered separately from controls. Intestinal bacterial colonization in all preterm infants was notable for low diversity. Patients with NEC had even less diversity, an increase in abundance of Gammaproteobacteria, a decrease in other bacteria species, and had received a higher mean number of previous days of antibiotics. Our results suggest that NEC is associated with severe lack of microbiota diversity that may accentuate the impact of single dominant microorganisms favored by empiric and widespread use of antibiotics.
0
Citation552
0
Save
0

Reproducible Community Dynamics of the Gastrointestinal Microbiota following Antibiotic Perturbation

Dionysios Antonopoulos et al.Mar 24, 2009
ABSTRACT Shifts in microbial communities are implicated in the pathogenesis of a number of gastrointestinal diseases, but we have limited understanding of the mechanisms that lead to altered community structures. One difficulty with studying these mechanisms in human subjects is the inherent baseline variability of the microbiota in different individuals. In an effort to overcome this baseline variability, we employed a mouse model to control the host genotype, diet, and other possible influences on the microbiota. This allowed us to determine whether the indigenous microbiota in such mice had a stable baseline community structure and whether this community exhibited a consistent response following antibiotic administration. We employed a tag-sequencing strategy targeting the V6 hypervariable region of the bacterial small-subunit (16S) rRNA combined with massively parallel sequencing to determine the community structure of the gut microbiota. Inbred mice in a controlled environment harbored a reproducible baseline community that was significantly impacted by antibiotic administration. The ability of the gut microbial community to recover to baseline following the cessation of antibiotic administration differed according to the antibiotic regimen administered. Severe antibiotic pressure resulted in reproducible, long-lasting alterations in the gut microbial community, including a decrease in overall diversity. The finding of stereotypic responses of the indigenous microbiota to ecologic stress suggests that a better understanding of the factors that govern community structure could lead to strategies for the intentional manipulation of this ecosystem so as to preserve or restore a healthy microbiota.
0
Citation524
0
Save
0

Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity

Christian Evans et al.Mar 26, 2014
Diet-induced obesity (DIO) is a significant health concern which has been linked to structural and functional changes in the gut microbiota. Exercise (Ex) is effective in preventing obesity, but whether Ex alters the gut microbiota during development with high fat (HF) feeding is unknown.Determine the effects of voluntary Ex on the gastrointestinal microbiota in LF-fed mice and in HF-DIO.Male C57BL/6 littermates (5 weeks) were distributed equally into 4 groups: low fat (LF) sedentary (Sed) LF/Sed, LF/Ex, HF/Sed and HF/Ex. Mice were individually housed and LF/Ex and HF/Ex cages were equipped with a wheel and odometer to record Ex. Fecal samples were collected at baseline, 6 weeks and 12 weeks and used for bacterial DNA isolation. DNA was subjected both to quantitative PCR using primers specific to the 16S rRNA encoding genes for Bacteroidetes and Firmicutes and to sequencing for lower taxonomic identification using the Illumina MiSeq platform. Data were analyzed using a one or two-way ANOVA or Pearson correlation.HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p<0.05). Visualization of Unifrac distance data with principal coordinates analysis indicated clustering by both diet and Ex at week 12. Sequencing demonstrated Ex-induced changes in the percentage of major bacterial phyla at 12 weeks. A correlation between total Ex distance and the ΔCt Bacteroidetes: ΔCt Firmicutes ratio from qPCR demonstrated a significant inverse correlation (r2 = 0.35, p = 0.043).Ex induces a unique shift in the gut microbiota that is different from dietary effects. Microbiota changes may play a role in Ex prevention of HF-DIO.
0
Citation499
0
Save
Load More