miR-33 in Cholesterol Control With the well-established link between serum cholesterol levels and cardiovascular disease and the availability of effective cholesterol-lowering drugs, cholesterol screening has rapidly become a routine part of health care. Yet, much remains to be learned about how cholesterol levels are regulated at the cellular level (see the Perspective by Brown et al. ). Now, Najafi-Shoushtari et al. (p. 1566 , published online 13 May) and Rayner et al. (p. 1570 , published online 13 May) have discovered a new molecular player in cholesterol control—a small noncoding RNA that, intriguingly, is embedded within the genes coding for sterol regulatory element-binding proteins (SREBPs), transcription factors already known to regulate cholesterol levels. This microRNA, called miR-33, represses expression of the adenosine triphosphate–binding cassette transporter A1, a protein that regulates synthesis of high-density lipoprotein (HDL, or “good” cholesterol) and that helps to remove “bad” cholesterol from the blood. Reducing the levels of miR-33 in mice boosted serum HDL levels, suggesting that manipulation of this regulatory circuit might be therapeutically useful.