TZ
Tiansheng Zhu
Author with expertise in Mass Spectrometry Techniques with Proteins
Sun Yat-sen University, Tarim University, Westlake University
+ 8 more
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
0
h-index:
16
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

PulseDIA: in-depth data independent acquisition mass spectrometry using enhanced gas phase fractionation

Xue Cai et al.May 7, 2020
+12
X
W
X
An inherent bottleneck of data independent acquisition (DIA) analysis by Orbitrap-based mass spectrometers is the relatively large window width due to the relatively slow scanning rate compared to TOF. Here we present a novel gas phase separation and MS acquisition method called PulseDIA-MS, which improves the specificity and sensitivity of Orbitrap-based DIA analysis. This is achieved by dividing the ordinary DIA-MS analysis covering the entire mass range into multiple injections for DIA-MS analyses with complementary windows. Using standard HeLa digests, the PulseDIA method identified 69,530 peptide precursors from 9,337 protein groups with ten MS injections of 30 min LC gradient. The PulseDIA scheme containing two complementary windows led to the highest gain of peptide and protein identifications per time unit compared to the conventional 30 min DIA method. We further applied the method to profile the proteome of 18 cholangiocarcinoma (CCA) tissue samples (benign and malignant) from nine patients. PulseDIA identified 7,796 protein groups in these CCA samples, with 14% increase of protein identifications, compared to the conventional DIA method. The missing value for protein matrix dropped by 7% with PulseDIA acquisition. 681 proteins were significantly dysregulated in tumorous CCA samples. Together, we presented and benchmarked an alternative DIA method with higher sensitivity and lower missing rate.
8

DPHL v2: An updated and comprehensive DIA pan-human assay library for quantifying more than 14,000 proteins

Zhangzhi Xue et al.Oct 24, 2023
+32
F
T
Z
Summary A comprehensive pan-human spectral library is critical for biomarker discovery using mass spectrometry (MS)-based proteomics. DPHL v1, a previous pan-human library built from 1096 data-dependent acquisition (DDA) MS data of 16 human tissue types, allows quantifying 10,943 proteins. However, a major limitation of DPHL v1 is the lack of semi-tryptic peptides and protein isoforms, which are abundant in clinical specimens. Here, we generated DPHL v2 from 1608 DDA-MS data acquired using Orbitrap mass spectrometers. The data included 586 DDA-MS newly acquired from 17 tissue types, while 1022 files were derived from DPHL v1. DPHL v2 thus comprises data from 24 sample types, including several cancer types (lung, breast, kidney, and prostate cancer, among others). We generated four variants of DPHL v2 to include semi-tryptic peptides and protein isoforms. DPHL v2 was then applied to a publicly available colorectal cancer dataset with 286 DIA-MS files. The numbers of identified and significantly dysregulated proteins increased by at least 21.7% and 14.2%, respectively, compared with DPHL v1. Our findings show that the increased human proteome coverage of DPHL v2 provides larger pools of potential protein biomarkers.
4

Proteomic-based stratification of intermediate-risk prostate cancer patients

Qing Zhong et al.Oct 24, 2023
+28
A
R
Q
ABSTRACT Gleason grading is an important prognostic indicator for prostate adenocarcinoma and is crucial for patient treatment decisions. However, intermediate-risk patients diagnosed in Gleason Grade Groups (GG) 2 and GG3 can harbour either aggressive or non-aggressive disease, resulting in under- or over-treatment of a significant number of patients. Here, we performed proteomic, differential expression, machine learning, and survival analyses for 1,348 matched tumour and benign sample runs from 278 patients. Three proteins (F5, TMEM126B and EARS2) were identified as candidate biomarkers in patients with biochemical recurrence. Multivariate Cox regression yielded 18 proteins, from which a risk score was constructed to dichotomise prostate cancer patients into low- and high-risk groups. This 18-protein signature is prognostic for the risk of biochemical recurrence and completely independent of the intermediate GG. Our results suggest that markers generated by computational proteomic profiling have the potential for clinical applications including integration into prostate cancer management.
0

High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification

Yi Zhu et al.May 7, 2020
+36
Q
T
Y
Formalin-fixed, paraffin-embedded (FFPE), biobanked tissue samples offer an invaluable resource for clinical and biomarker research. Here we developed a pressure cycling technology (PCT)-SWATH mass spectrometry workflow to analyze FFPE tissue proteomes and applied it to the stratification of prostate cancer (PCa) and diffuse large B-cell lymphoma (DLBCL) samples. We show that the proteome patterns of FFPE PCa tissue samples and their analogous fresh frozen (FF) counterparts have a high degree of similarity and we confirmed multiple proteins consistently regulated in PCa tissues in an independent sample cohort. We further demonstrate temporal stability of proteome patterns from FFPE samples that were stored between one to 15 years in a biobank and show a high degree of the proteome pattern similarity between two types histological region of small FFPE samples, i.e. punched tissue biopsies and thin tissue sections of micrometer thickness, despite the existence of certain degree of biological variations. Applying the method to two independent DLBCL cohorts we identified myeloperoxidase (MPO), a peroxidase enzyme, as a novel prognostic marker. In summary, this study presents a robust proteomic method to analyze bulk and biopsy FFPE tissues and reports the first systematic comparison of proteome maps generated from FFPE and FF samples. Our data demonstrate the practicality and superiority of FFPE over FF samples for proteome in biomarker discovery. Promising biomarker candidates for PCa and DLBCL have been discovered.
0

DPHL: A pan-human protein mass spectrometry library for robust biomarker discovery using Data-Independent Acquisition and Parallel Reaction Monitoring

Tiansheng Zhu et al.May 7, 2020
+73
Y
Y
T
To answer the increasing need for detecting and validating protein biomarkers in clinical specimens, proteomic techniques are required that support the fast, reproducible and quantitative analysis of large clinical sample cohorts. Targeted mass spectrometry techniques, specifically SRM, PRM and the massively parallel SWATH/DIA technique have emerged as a powerful method for biomarker research. For optimal performance, they require prior knowledge about the fragment ion spectra of targeted peptides. In this report, we describe a mass spectrometric (MS) pipeline and spectral resource to support data-independent acquisition (DIA) and parallel reaction monitoring (PRM) based biomarker studies. To build the spectral resource we integrated common open-source MS computational tools to assemble an open source computational workflow based on Docker. It was then applied to generate a comprehensive DIA pan-human library (DPHL) from 1,096 data dependent acquisition (DDA) MS raw files, and it comprises 242,476 unique peptide sequences from 14,782 protein groups and 10,943 SwissProt-annotated proteins expressed in 16 types of cancer samples. In particular, tissue specimens from patients with prostate cancer, cervical cancer, colorectal cancer, hepatocellular carcinoma, gastric cancer, lung adenocarcinoma, squamous cell lung carcinoma, diseased thyroid, glioblastoma multiforme, sarcoma and diffuse large B-cell lymphoma (DLBCL), as well as plasma samples from a range of hematologic malignancies were collected from multiple clinics in China, the Netherlands and Singapore and included in the resource. This extensive spectral resource was then applied to a prostate cancer cohort of 17 patients, consisting of 8 patients with prostate cancer (PCa) and 9 with benign prostate hyperplasia (BPH), respectively. Data analysis of DIA data from these samples identified differential expressions of FASN, TPP1 and SPON2 in prostate tumors. Thereafter, PRM validation was applied to a larger PCa cohort of 57 patients and the differential expressions of FASN, TPP1 and SPON2 in prostate tumors were validated. As a second application, the DPHL spectral resource was applied to a patient cohort consisting of samples from 19 DLBCL patients and 18 healthy individuals. Differential expressions of CRP, CD44 and SAA1 between DLBCL cases and healthy controls were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supported that DIA-PRM MS pipeline enables robust protein biomarker discoveries.
0

BatchServer: a web server for batch effect evaluation, visualization and correction

Tiansheng Zhu et al.May 7, 2020
+5
C
G
T
Background: Batch effects are unwanted data variations that may obscure biological signals, lead-ing to bias or errors in subsequent data analyses. Effective evaluation and elimination of batch effects is thus necessary for omics data analysis, especially in the context of large cohort of thousands of samples with different experimental platforms. Existing batch effect reducing tools mainly focus on the development of algorithms, while requiring programming skills and the knowledge of data distribution limits their application for many researchers. In order to facilitate evaluation and correction of batch effects, we provided an user-friendly and easy-to-use graphical batch effects analysis web platform. Results: We developed an open-source R/Shiny based web server -- BatchServer that allows users to graphical interactively evaluate, visualize and correct of the batch effects in high-throughput data sets. BatchServer including a modified ComBat, which was a popular batch effect adjustment tool to correct batch effects, PVCA (Principal Variance Component Analysis) and UMAP (Manifold Approximation and Projection) to evaluate and visualize batch effects. BatchServer is an efficient batch effects processing platform, as its application in three publicly available data sets. Conclusion: Our user-friendly online open-source web server BatchServer supports comprehensive batch effects analysis facilitating the batch effect evaluations and corrections for biologists. Batch-Server is deployed at https://lifeinfor.shinyapps.io/batchserver/ as a web server. The source codes are freely available at https://github.com/zhutiansheng/batch_server.