Two groups present redshift determinations and other spectroscopic data for the γ-ray burst GRB 090423 — now the earliest and most distant astronomical object known. Salvaterra et al. report its initial detection with the Swift satellite on 23 April 2009, and a redshift determination with the Telescopio Nazionale Galileo on La Palma 14 hours after the burst, obtaining z ≈ 8.1. Tanvir et al. used the United Kingdom Infrared Telescope, Hawaii, from about 20 minutes after the burst and arrive at z ≈ 8.2. The previous highest redshift known for any object was z = 6.96 for a Lyman-α emitting galaxy. These measurements imply that massive stars were being produced and were dying as γ-ray bursts as early as about 600 million years after the Big Bang, and that their properties are very similar to those stars producing γ-ray bursts 10 billion years later. Long-duration γ-ray bursts (GRBs), thought to result from the explosions of certain massive stars, are bright enough that some of them should be observable out to redshifts of z > 20. So far, the highest redshift measured for any object has been z = 6.96, for a Lyman-α emitting galaxy. Here, and in an accompanying paper, GRB 090423 is reported to lie at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs approximately 620 million years after the Big Bang. Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars1, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology2,3,4. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy5. Here we report that GRB 090423 lies at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs ∼630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.