DR
Debra Rimmington
Author with expertise in Role of Growth Factors in Health and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
761
h-index:
22
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GDF15 mediates the effects of metformin on body weight and energy balance

Anthony Coll et al.Dec 25, 2019
Metformin, the world’s most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk1,2. More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner3. The molecular mechanisms by which metformin lowers body weight are unknown. Here we show—in two independent randomized controlled clinical trials—that metformin increases circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15), which has been shown to reduce food intake and lower body weight through a brain-stem-restricted receptor. In wild-type mice, oral metformin increased circulating GDF15, with GDF15 expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to a high-fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GDNF family receptor α-like (GFRAL). In obese mice on a high-fat diet, the effects of metformin to reduce body weight were reversed by a GFRAL-antagonist antibody. Metformin had effects on both energy intake and energy expenditure that were dependent on GDF15, but retained its ability to lower circulating glucose levels in the absence of GDF15 activity. In summary, metformin elevates circulating levels of GDF15, which is necessary to obtain its beneficial effects on energy balance and body weight, major contributors to its action as a chemopreventive agent. In mouse studies, metformin treatment results in increased secretion of growth/differentiation factor 15 (GDF15), which prevents weight gain in response to high-fat diet, and GDF15-independent lowering of circulating blood glucose.
0
Citation411
0
Save
1

A survey of the mouse hindbrain in the fed and fasted state using single-nucleus RNA sequencing

Georgina Dowsett et al.Mar 12, 2021
Abstract Objective The area postrema (AP) and the nucleus tractus solitaris (NTS), located in the hindbrain, are key nuclei that sense and integrate peripheral nutritional signals and, consequently, regulate feeding behaviour. While single cell transcriptomics have been used in mice to reveal the gene expression profile and heterogeneity of key hypothalamic populations, similar in-depth studies have not yet been performed in the hindbrain. Methods Using single-nucleus RNA sequencing, we provide a detailed survey of 16,034 cells within the AP and NTS of the mouse, in the fed and fasted state. Results Of these, 8910 are neurons that group into 30 clusters, with 4289 coming from mice fed ad libitum and 4621 from overnight fasted mice. 7124 nuclei are from non-neuronal cells, including oligodendrocytes, astrocytes and microglia. Interestingly, we identified that the oligodendrocyte population was particularly transcriptionally sensitive to an overnight fast. The receptors GLP1R, GIPR, GFRAL and CALCR, which bind GLP1, GIP, GDF15 and amylin respectively, are all expressed in the hindbrain and are major targets for anti-obesity therapeutics. We characterise the transcriptomes of these four populations and show that their gene expression profiles are not dramatically altered by an overnight fast. Notably, we find that roughly half of cells that express GIPR are oligodendrocytes. Additionally, we profile POMC expressing neurons within the hindbrain and demonstrate that 84% of POMC neurons express either PCSK1, PSCK2 or both, implying that melanocortin peptides are likely produced by these neurons. Conclusion We provide a detailed single-cell level characterisation of AP and NTS cells expressing receptors for key anti-obesity drugs that are either already approved for human use or are in clinical trials. This resource will help delineate the mechanisms underlying the effectiveness of these compounds, and also prove useful in the continued search for other novel therapeutic targets.
1
Citation2
0
Save
0

GDF15 and the beneficial actions of metformin in pre-diabetes

Anthony Coll et al.Jun 21, 2019
Metformin, the world's most prescribed anti-diabetic drug, is also effective in preventing Type 2 diabetes in people at high risk, by lowering body weight, fat mass and circulating insulin levels through mechanisms that are incompletely understood. Recent observational studies reporting the association of metformin use and circulating levels of GDF15 led us to hypothesize that GDF15, which signals through a specific receptor complex in the hindbrain to reduce body weight, might mediate these effects. We measured GDF15 in people without diabetes from a randomized placebo-controlled trial of metformin. Over 18 months, participants allocated metformin lost significant weight and levels of GDF15 were persistently elevated compared to placebo. The change in plasma GDF15 in this study correlated positively with weight loss. In wild-type mice, oral metformin increased circulating GDF15 with GDF15 expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to high fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GFRAL. In obese, high fat-fed mice, the effects of metformin to reduce body weight were reversed by a GFRAL antagonist antibody. Metformin had effects on both energy intake and energy expenditure that required GDF15. The insulin sensitising effects of metformin determined by insulin tolerance were abolished in mice lacking GDF15. Metformin significantly reduced fasting glucose and insulin levels in wild type but not in mice lacking GDF15. In summary, metformin increases the circulating levels of GDF15, which appears to be necessary for many of its actions as a metabolic chemopreventive agent.
0

GDF15 antagonism limits severe heart failure and prevents cardiac cachexia

Minoru Takaoka et al.Sep 19, 2024
Abstract Aims Heart failure and associated cachexia is an unresolved and important problem. This study aimed to determine the factors that contribute to cardiac cachexia in a new model of heart failure in mice that lack the integrated stress response (ISR) induced eIF2α phosphatase, PPP1R15A. Methods and results Mice were irradiated and reconstituted with bone marrow cells. Mice lacking functional PPP1R15A, exhibited dilated cardiomyopathy and severe weight loss following irradiation, whilst wild-type mice were unaffected. This was associated with increased expression of Gdf15 in the heart and increased levels of GDF15 in circulation. We provide evidence that the blockade of GDF15 activity prevents cachexia and slows the progression of heart failure. We also show the relevance of GDF15 to lean mass and protein intake in patients with heart failure. Conclusion Our data suggest that cardiac stress mediates a GDF15-dependent pathway that drives weight loss and worsens cardiac function. Blockade of GDF15 could constitute a novel therapeutic option to limit cardiac cachexia and improve clinical outcomes in patients with severe systolic heart failure.
0

Loss And Gain Of Function Experiments Implicate TMEM18 As A Mediator Of The Strong Association Between Genetic Variants At Human Chromosome 2p25.3 And Obesity

Rachel Larder et al.Mar 31, 2017
An intergenic region of human Chromosome 2 (2p25.3) harbours genetic variants which are among those most strongly and reproducibly associated with obesity. The molecular mechanisms mediating these effects remain entirely unknown. The gene closest to these variants is TMEM18, encoding a transmembrane protein localised to the nuclear membrane. The expression of Tmem18 within the murine hypothalamic paraventricular nucleus was altered by changes in nutritional state, with no significant change seen in three other closest genes. Germline loss of Tmem18 in mice resulted in increased body weight, which was exacerbated by high fat diet and driven by increased food intake. Selective overexpression of Tmem18 in the PVN of wild-type mice reduced food intake and also increased energy expenditure. We confirmed the nuclear membrane localisation of TMEM18 but provide new evidence that it is has four, not three, transmembrane domains and that it physically interacts with key components of the nuclear pore complex. Our data support the hypothesis that TMEM18 itself, acting within the central nervous system, is a plausible mediator of the impact of adjacent genetic variation on human adiposity.