YQ
Yi Qin
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
0
h-index:
47
/
i10-index:
123
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sleep-related thalamocortical spindles and delta oscillations are reduced during a ketamine-induced psychosis-relevant transition state.

Ali Mahdavi et al.Nov 8, 2019
+3
D
Y
A
Background: In schizophrenia, sleep spindles are reduced, supporting the hypothesis that the thalamus and glutamate receptors play a crucial etio-pathophysiological role, whose underlying mechanisms remain unknown. We hypothesized that a reduced function of NMDA receptors is involved in the psychosis-related spindle deficit. Methods: An electrophysiological multisite cell-to-network exploration was used to investigate, in sleeping rats, the effects of a ketamine-induced psychosis-relevant transition state in the sensorimotor and associative/cognitive thalamocortical (TC) systems. Results: Under the control condition, spontaneously-occurring spindles (intra-frequency: 10-16 waves/s) and delta-frequency (1-4Hz) oscillations were recorded in the EEG of the frontoparietal cortex, in thalamic extracellular recordings (n=16), in dual juxtacellularly recorded GABAergic thalamic reticular nucleus (TRN) and glutamatergic TC neurons (n=8), and in intracellularly recorded TC neurons (n=8). The TRN cells rhythmically exhibited robust high-frequency bursts of action potentials (7 to 15 APs at 200-700 Hz). A single administration of low-dose ketamine fleetingly reduced TC spindles and delta oscillations, amplified ongoing gamma-(30-80Hz) and higher-frequency oscillations, and switched the firing pattern of both TC and TRN neurons from a burst mode to a single AP mode. Furthermore, ketamine strengthened the gamma-frequency band TRN-TC connectivity (n=11). The antipsychotic clozapine consistently prevented the ketamine effects on spindles, delta- and gamma-/higher-frequency TC oscillations (n=7). Conclusion: The present findings support the hypothesis that NMDA receptor hypofunction is involved in the psychosis-related reduction in sleep spindles and delta oscillations. The ketamine-induced swift conversion (from burst to single APs) of ongoing TC-TRN activities may have involved both the ascending reticular activating system and the corticothalamic pathway.
0

Thalamic regulation of ocular dominance plasticity in adult visual cortex

Yi Qin et al.Jan 1, 2023
+4
S
M
Y
Experience-dependent plasticity in the adult visual system is generally thought of as a cortical process. However, several recent studies have shown that perceptual learning or monocular deprivation can also induce plasticity in the adult dorsolateral geniculate nucleus (dLGN) of the thalamus. How plasticity in the thalamus and cortex interact in the adult visual system is ill understood. To assess the influence of thalamic plasticity on plasticity in primary visual cortex (V1), we made use of our previous finding that during the critical period, ocular dominance (OD) plasticity occurs in dLGN and requires thalamic synaptic inhibition. Using multielectrode recordings we find that this is also true in adult mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult V1 is absent. To study the influence of V1 on thalamic plasticity we silenced V1 and show that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused by feedback from V1. We conclude that during adulthood, the thalamus plays an unexpectedly dominant role in experience-dependent plasticity in V1. Our findings highlight the importance of considering the thalamus as a potential source of plasticity in learning events that are typically thought of as cortical processes.
0

Astrocyte CB1 receptors are required for inhibitory maturation and ocular dominance plasticity in the mouse visual cortex

Rogier Min et al.Jan 1, 2023
+3
S
Y
R
Neuronal circuits are shaped by experience. This happens much more readily in the young compared to the adult brain. The unique learning capacity of the young brain is regulated through postnatal critical periods, during which the ability of neuronal networks to re-wire is greatly enhanced. Endocannabinoids, which signal through the cannabinoid CB1 receptor (CB1R), regulate several forms of neuronal plasticity. In the developing neocortex, CB1Rs play a key role in the maturation of inhibitory circuits. For example, interfering with CB1R signaling during development disrupts inhibitory maturation in the prefrontal cortex. In developing primary visual cortex (V1), endocannabinoid-mediated plasticity at inhibitory synapses regulates the maturation of inhibitory synaptic transmission, shifting synapses from an immature state characterized by strong short-term depression to a mature state with reduced short-term depression. This maturation step correlates with the timing of the critical period. While CB1Rs were originally thought to reside mainly on presynaptic axon terminals, recent studies have highlighted an unexpected role for astrocytic CB1Rs in endocannabinoid mediated plasticity. Here, we investigate the impact of cell-type specific removal of CB1Rs from interneurons or astrocytes on development of inhibitory synapses and network plasticity of V1. We show that removing CB1Rs from astrocytes interferes with maturation of inhibitory synaptic transmission in V1. In addition, it strongly reduces ocular dominance (OD) plasticity during the critical period. In contrast, removing interneuron CB1Rs leaves these processes intact. Our results reveal an unexpected role of astrocytic CB1Rs in critical period plasticity in V1, and highlight the involvement of glial cells in the plasticity and synaptic maturation of sensory circuits.
4

The psychotomimetic ketamine disrupts the transfer of late sensory information in the corticothalamic network

Yi Qin et al.Feb 22, 2022
+3
P
A
Y
ABSTRACT In prodromal and early schizophrenia, disorders of attention and perception are associated with structural and chemical brain abnormalities, and with dysfunctional corticothalamic networks exhibiting disturbed brain rhythms. The underlying mechanisms are elusive. The non-competitive NMDA receptor antagonist ketamine simulates the symptoms of prodromal and early schizophrenia, including disturbances in ongoing and task & sensory-related broadband beta-/gamma-frequency (17-29 Hz/30-80 Hz) oscillations in corticothalamic networks. In normal healthy subjects and rodents, complex integration processes, like sensory perception, induce transient, large-scale synchronized beta/gamma oscillations in a time window of a few hundreds of ms (200-700 ms) after the presentation of the object of attention (e.g., sensory stimulation). Our goal was to use an electrophysiological multisite network approach to investigate, in lightly anesthetized rats, the effects of a single psychotomimetic dose (2.5 mg/kg, subcutaneous) of ketamine on sensory stimulus-induced oscillations. Ketamine transiently increased the power of baseline beta/gamma oscillations and decreased sensory-induced beta/gamma oscillations. In addition, it disrupted information transferability in both the somatosensory thalamus and the related cortex and decreased the sensory-induced thalamocortical connectivity in the broadband gamma range. In conclusion, the present findings support the hypothesis that NMDA receptor antagonism disrupts the transfer of perceptual information in the somatosensory cortico-thalamo-cortical system. LAY ABSTRACT Cognitive deficit is usual in schizophrenia. Perception- or task-related beta/gamma-frequency oscillations are decreased. In healthy humans and rodents, ketamine-induced NMDA receptor antagonism simulates the symptoms of early schizophrenia and excessively amplifies baseline beta/gamma oscillations. In the present study, using an electrophysiological multisite network approach in a rodent model, it is demonstrated that ketamine, systemically administered at a single psychotomimetic dose, increases baseline beta/gamma oscillations, decreases beta/gamma responses induced by sensory stimulation in a short time window (200-700 ms), and disrupts information transfer in the cortico-thalamo-cortical network. The present findings have mechanistic relevance for cognitive deficits in schizophrenia.