Abstract Despite multiple disparate prognostic risk analysis systems for evaluating clinical outcome for patients with myelodysplastic syndrome (MDS), imprecision persists with such analyses. To attempt to improve on these systems, an International MDS Risk Analysis Workshop combined cytogenetic, morphological, and clinical data from seven large previously reported risk-based studies that had generated prognostic systems. A global analysis was performed on these patients, and critical prognostic variables were re-evaluated to generate a consensus prognostic system, particularly using a more refined bone marrow (BM) cytogenetic classification. Univariate analysis indicated that the major variables having an impact on disease outcome for evolution to acute myeloid leukemia were cytogenetic abnormalities, percentage of BM myeloblasts, and number of cytopenias; for survival, in addition to the above, variables also included age and gender. Cytogenetic subgroups of outcome were as follows: “good” outcomes were normal, −Y alone, del(5q) alone, del(20q) alone; “poor” outcomes were complex (ie, ≥3 abnormalities) or chromosome 7 anomalies; and “intermediate” outcomes were other abnormalities. Multivariate analysis combined these cytogenetic subgroups with percentage of BM blasts and number of cytopenias to generate a prognostic model. Weighting these variables by their statistical power separated patients into distinctive subgroups of risk for 25% of patients to undergo evolution to acute myeloid leukemia, with: low (31% of patients), 9.4 years; intermediate-1 (INT-1; 39%), 3.3 years; INT-2 (22%), 1.1 years; and high (8%), 0.2 year. These features also separated patients into similar distinctive risk groups for median survival: low, 5.7 years; INT-1, 3.5 years; INT-2, 1.2 years; and high, 0.4 year. Stratification for age further improved analysis of survival. Compared with prior risk-based classifications, this International Prognostic Scoring System provides an improved method for evaluating prognosis in MDS. This classification system should prove useful for more precise design and analysis of therapeutic trials in this disease.