BH
Bradley Harris
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
5
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

Development and simulation of fully glycosylated molecular models of ACE2-Fc fusion proteins and their interaction with the SARS-CoV-2 spike protein binding domain

Austen Bernardi et al.May 6, 2020
+4
B
Y
A
Abstract We develop fully glycosylated computational models of ACE2-Fc fusion proteins which are promising targets for a COVID-19 therapeutic. These models are tested in their interaction with a fragment of the receptor-binding domain (RBD) of the Spike Protein S of the SARS-CoV-2 virus, via atomistic molecular dynamics simulations. We see that some ACE2 glycans interact with the S fragments, and glycans are influencing the conformation of the ACE2 receptor. Additionally, we optimize algorithms for protein glycosylation modelling in order to expedite future model development. All models and algorithms are openly available.
11
Citation3
0
Save
15

SARS-Cov-2 Spike binding to ACE2 is stronger and longer ranged due to glycan interaction

Yihan Huang et al.Jul 15, 2021
+5
S
B
Y
Abstract Highly detailed steered Molecular Dynamics simulations are performed on differently glycosylated receptor binding domains of the SARS-CoV-2 spike protein. The binding strength and the binding range increases with glycosylation. The interaction energy rises very quickly with pulling the proteins apart and only slowly drops at larger distances. We see a catch slip type behavior where interactions during pulling break and are taken over by new interactions forming. The dominant interaction mode are hydrogen bonds but Lennard-Jones and electrostatic interactions are relevant as well. Statement of Significance Glycosylation of the receptor binding domain of the Spike protein of SARS-CoV-2 as well as the ACE2 receptor leads to stronger and longer ranged binding interactions between the proteins. Particularly, at shorter distances the interactions are between residues of the proteins themselves whereas at larger distances these interactions are mediated by the glycans. Abstract Figure
15
Paper
Citation2
0
Save
6

Production of novel Spike truncations in Chinese hamster ovary cells

Shiaki Minami et al.Dec 8, 2021
+6
Y
S
S
Abstract SARS-CoV-2 Spike is a key protein that mediates viral entry into cells and elicits antibody responses. Its importance in infection, diagnostics, and vaccinations has created a large demand for purified Spike for clinical and research applications. Spike is difficult to express, prompting modifications to the protein and expression platforms to improve yields. Alternatively, Spike receptor binding domain (RBD) is commonly expressed with higher titers, though it has lower sensitivity in serological assays. Here, we improve transient Spike expression in Chinese hamster ovary (CHO) cells. We demonstrate that Spike titers increase significantly over the expression period, maximizing at 14 mg/L at day 7. In comparison, RBD titers peak at 54 mg/L at day 3. Next, we develop 8 Spike truncations (T1-T8) in pursuit of a truncation with high expression and antibody binding. The truncations T1 and T4 express at 130 mg/L and 73 mg/L, respectively, which are higher than our RBD titers. Purified proteins were evaluated for binding to antibodies raised against full-length Spike. T1 has similar sensitivity as Spike against a monoclonal antibody and even outperforms Spike for a polyclonal antibody. These results suggest T1 is a promising Spike alternative for use in various applications.