PR
Pierre-Yves Rohan
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
0
h-index:
13
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Digital twinning of Cellular Capsule Technology: emerging outcomes from the perspective of porous media mechanics

Stéphane Urcun et al.Jun 11, 2020
Abstract Spheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation of the capsule. Here we focus on the particular case of Cellular Capsule Technology (CCT). We show in this contribution that a modeling approach accounting for the triphasic nature of the spheroid (extracellular matrix, tumor cells and interstitial fluid) offers a new perspective of analysis revealing that the pressure retrieved experimentally cannot be interpreted as a direct picture of the pressure sustained by the tumor cells and, as such, cannot therefore be used to quantify the critical pressure which induces stress-induced phenotype switch in tumor cells. The proposed multiphase reactive poro-mechanical model was cross-validated. Parameter sensitivity analyses on the digital twin revealed that the main parameters determining the encapsulated growth configuration are different from those driving growth in free condition, confirming that radically different phenomena are at play. Results reported in this contribution support the idea that multiphase reactive poro-mechanics is an exceptional theoretical framework to attain an in-depth understanding of CCT experiments, to confirm their hypotheses and to further improve their design.
1

Development and evaluation of a new methodology for Soft Tissue Artifact compensation in the lower limb

Bhrigu Lahkar et al.Feb 9, 2021
Abstract Skin Marker (SM) based motion capture is the most widespread technique used for motion analysis. Yet, the accuracy is often hindered by Soft Tissue Artifact (STA). This is a major issue in clinical gait analysis where kinematic results are used for decision-making. It also has a considerable influence on the results of rigid body and Finite Element (FE) musculoskeletal models that rely on SM-based kinematics to estimate muscle, contact and ligament forces. Current techniques designed to compensate for STA, in particular multi-body optimization methods, assume anatomical simplifications to define joint constraints. These methods, however, cannot adapt to subjects’ bone morphology, particularly for patients with joint lesions, nor easily can account for subject- and location-dependent STA. In this perspective, we propose to develop a conceptual FE based model of the lower limb for STA compensation and evaluate it for 66 healthy subjects under level walking motor task. Both hip and knee joint kinematics were analyzed, considering both rotational and translational joint motion. Results showed that STA caused underestimation of the hip joint kinematics (up to 2.2°) for all rotational DoF, and overestimation of knee joint kinematics (up to 12°) except in flexion/extension. Joint kinematics, in particular the knee joint, appeared to be sensitive to soft tissue stiffness parameters (rotational and translational mean difference up to 1.5° and 3.4 mm). Analysis of the results using alternative joint representations highlighted the versatility of the proposed modeling approach. This work paves the way for using personalized models to compensate for STA in healthy subjects and different activities.
2

Non-operable glioblastoma: proposition of patient-specific forecasting by image-informed poromechanical model

Stéphane Urcun et al.Jan 12, 2023
Abstract We propose a novel image-informed glioblastoma mathematical model within a reactive multiphase poromechanical framework. Poromechanics offers to model in a coupled manner the interplay between tissue deformation and pressure-driven fluid flows, these phenomena existing simultaneously in cancer disease. The model also relies on two mechano-biological hypotheses responsible for the heterogeneity of the GBM: hypoxia signaling cascade and interaction between extra-cellular matrix and tumor cells. The model belongs to the category of patient-specific image-informed models as it is initialized, calibrated and evaluated by the means of patient imaging data. The model is calibrated with patient data after 6 cycles of concomitant radiotherapy chemotherapy and shows good agreement with treatment response 3 months after chemotherapy maintenance. Sensitivity of the solution to parameters and to boundary conditions is provided. As this work is only a first step of the inclusion of poromechanical framework in image-informed glioblastoma mathematical models, leads of improvement are provided in the conclusion.
0

In vivo mechanical response of thigh soft tissues under compression: A two-layer model allows an improved representation of the local tissue kinematics

Alexandre Segain et al.May 24, 2024
Biomechanical parameters have the potential to be used as physical markers for prevention and diagnosis. Finite Element Analysis (FEA) is a widely used tool to evaluate these parameters in vivo. However, the development of clinically relevant FEA requires personalisation of the geometry, boundary conditions, and constitutive parameters. This contribution focuses on the characterisation of mechanical properties in vivo which remains a significant challenge for the community. The aim of this retrospective study is to evaluate the sensitivity of the computed elastic parameters (shear modulus of fat and muscle tissues) derived by inverse analysis as a function of the geometrical modelling assumption (homogenised monolayer vs bilayer) and the formulation of the cost function. The methodology presented here proposes to extract the experimental force-displacement response for each tissue layer (muscle and fat) and construct the associated Finite Element Model for each volunteer, based on data previously collected in our group (N=7 volunteers) as reported in (Fougeron et al., 2020). The sensitivity analysis indicates that the choice of the cost function has minimal impact on the topology of the response surface in the parametric space. Each surface displays a valley of parameters that minimises the cost function. The constitutive properties of the thigh (reported as median interquartile range) were determined to be () for the monolayer and () for the bilayer. A comparison of the homogenised monolayer and bilayer models showed that adding a layer reduces the error on the local force displacement curves, increasing the accuracy of the local kinematics of soft tissues during indentation. This allows for an increased understanding of load transmission in soft tissue. The comparison of the two models in terms of strains indicates that the modelling choice significantly influences the localization of maximal compressive strains. These results support the idea that the biomechanical community should conduct further work to develop reliable methodologies for estimating in vivo strain in soft tissue.