Abstract Cytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental processes, maintain cellular lineage specification, and can define or stratify cancer and other diseases. However, the wide variety of approaches available to interrogate these modifications has created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequencing applications in clinical and basic research. Here, we present a multi-platform assessment and a global resource for epigenetics research from the FDA’s Epigenomics Quality Control (EpiQC) Group. The study design leverages seven human cell lines that are designated as reference materials and publicly available from the National Institute of Standards and Technology (NIST) and Genome in a Bottle (GIAB) consortium. These samples were subject to a variety of genome-wide methylation interrogation approaches across six independent laboratories, with a primary focus was on 5-methylcytosine modifications. Each sample was processed in two or more technical replicates by three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), one enzymatic deamination method (EMseq), targeted methylation sequencing (Illumina Methyl Capture EPIC), and single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies. After rigorous quality assessment and comparison to Illumina EPIC methylation microarrays and testing on a range of algorithms (Bismark, BitmapperBS, BWAMeth, and GemBS), we found overall high concordance between assays (R=0.87-R0.93), differences in efficency of read mapping and CpG capture and coverage, and platform performance. The data provided herein can guide continued used of these reference materials in epigenomics assays, as well as provide best practices for epigenomics research and experimental design in future studies.