JM
Janna Mouw
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
1,479
h-index:
20
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The cancer glycocalyx mechanically primes integrin-mediated growth and survival

Matthew Paszek et al.Jun 25, 2014
+17
O
C
M
Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function. Metastatic cancer cells are shown to have a tendency towards forming a bulky glycocalyx owing to the production of large glycoproteins, and this cancer-associated glycocalyx has a mechanical effect on the spatial organization of integrins — by funnelling integrins into adhesions, integrin clustering and signalling is promoted, which leads to enhanced cell survival and proliferation. The composition of the cellular glycocalyx — a glycoprotein/polysaccharide layer that coats the cell surface — changes with the changing nature of a cell through processes such as tissue differentiation and disease. Valerie Weaver and colleagues set out to establish whether changes in glycocalyx composition in cancer cells contribute to the cancer phenotype. They find that bulky glycocalyx is a feature of metastatic cancer cells, resulting from the production of large glycoproteins. The bulky glycocalyx physically traps glycoprotein adhesion molecules called integrins, which in turn promote a signalling regime that favours cell survival and proliferation. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with aggressive breast cancers. These findings suggest that the glycocalyx and its molecular constituents are attractive targets for therapeutic interventions aimed at normalizing transmembrane receptor signalling.
0

Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression

Hanane Laklai et al.Apr 18, 2016
+19
M
Y
H
Impaired TGF-β signaling due to SMAD4 mutation in PDAC tumors initiates a STAT3-dependent signaling cascade that leads to increased stromal stiffening and disease progression. Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors and highlight STAT3 and mechanics as key drivers of this phenotype.
0
Citation492
0
Save
0

Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression

Janna Mouw et al.Mar 16, 2014
+10
L
Y
J
Mouw et al. delineate a molecular pathway by which matrix stiffness promotes tumor malignancy. Upon matrix stiffening, integrin signaling is engaged, triggering a signaling cascade that regulates the protumorigenic microRNA miR-18a. This leads to downregulation of PTEN and activation of oncogenic signaling. The pathway provides a link between mechanotransduction, miR regulation and oncogene activation that integrates biophysical changes into tumor progression and can also be altered in human tumors. Tissue mechanics regulate development and homeostasis and are consistently modified in tumor progression. Nevertheless, the fundamental molecular mechanisms through which altered mechanics regulate tissue behavior and the clinical relevance of these changes remain unclear. We demonstrate that increased matrix stiffness modulates microRNA expression to drive tumor progression through integrin activation of β-catenin and MYC. Specifically, in human and mouse tissue, increased matrix stiffness induced miR-18a to reduce levels of the tumor suppressor phosphatase and tensin homolog (PTEN), both directly and indirectly by decreasing levels of homeobox A9 (HOXA9). Clinically, extracellular matrix stiffness correlated directly and significantly with miR-18a expression in human breast tumor biopsies. miR-18a expression was highest in basal-like breast cancers in which PTEN and HOXA9 levels were lowest, and high miR-18a expression predicted poor prognosis in patients with luminal breast cancers. Our findings identify a mechanically regulated microRNA circuit that can promote malignancy and suggest potential prognostic roles for HOXA9 and miR-18a levels in stratifying patients with luminal breast cancers.
5

A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling

Tala Khatib et al.Mar 1, 2023
+6
B
A
T
ABSTRACT Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.
5
Citation1
0
Save
1

Mechanosensitive hormone signaling promotes mammary progenitor expansion and breast cancer progression

Jason Northey et al.Apr 20, 2022
+10
M
Y
J
ABSTRACT Tissue stem-progenitor cell frequency has been implicated in tumor risk and progression. Tissue-specific factors linking stem-progenitor cell frequency to cancer risk and progression remain ill defined. Using a genetically engineered mouse model that promotes integrin mechanosignaling with syngeneic manipulations, spheroid models, and patient-derived xenografts we determined that a stiff extracellular matrix and high integrin mechanosignaling increase stem-progenitor cell frequency to enhance breast tumor risk and progression. Studies revealed that high integrin-mechanosignaling expands breast epithelial stem-progenitor cell number by potentiating progesterone receptor-dependent RANK signaling. Consistently, we observed that the stiff breast tissue from women with high mammographic density, who exhibit an increased lifetime risk for breast cancer, also have elevated RANK signaling and a high frequency of stem-progenitor epithelial cells. The findings link tissue fibrosis and integrin mechanosignaling to stem-progenitor cell frequency and causally implicate hormone signaling in this phenotype. Accordingly, inhibiting RANK signaling could temper the tumor promoting impact of fibrosis on breast cancer and reduce the elevated breast cancer risk exhibited by women with high mammographic density. Summary Elevated mechano-signaling and matrix stiffness promote progesterone and RANK mediated expansion of mammary progenitors and breast cancer risk and progression.
4

Loss of the endocytic tumor suppressor HD-PTP phenocopies LKB1 and promotes RAS-driven oncogenesis

Chang-Soo Seong et al.Jan 27, 2023
+23
H
C
C
Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP (PTPN23) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.