ABSTRACT The capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). 1,2 Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e., clonal diversity, somatic hypermutation, germline gene usage). 3–8 However, it remains unclear if clonal selection and expansion of PCs follows any deterministic rules or is stochastic with regards to phenotypic antibody properties (i.e., antigen-binding, affinity, epitope specificity). Here we report on the in-depth genotypic and phenotypic characterization of clonally expanded PC antibody repertoires following protein immunization. We find that there is only a strong correlation with antigen-specificity among the most expanded clones (top ~ 10), whereas among the rest of the clonal repertoire antigen-specificity is stochastic. Furthermore, we report both on a polyclonal repertoire and clonal lineage level that antibody-antigen binding affinity does not correlate with clonal expansion or somatic hypermutation. Lastly, we provide evidence for convergence towards dominant epitopes despite clonal sequence diversity among the most expanded clones. Our results highlight the extent to which clonal expansion can be ascribed to antigen binding, affinity and epitope specificity and they have implications for the assessment of effective vaccines. Graphical abstract