Basement membranes (BMs) provide structural support to tissues and influence cell signaling. Mutations in COL4A1/COL4A2, a major BM component, cause eye, kidney and cerebrovascular disease, including stroke. Common variants in these genes are risk factors for intracerebral hemorrhage in the general population. However, the contribution of the matrix to the disease mechanism(s) and its effects on the biology of cells harboring a collagen IV mutation remain poorly understood. To shed light on this, we engineered controlled microenvironments using polymer biointerfaces coated with ECM proteins laminin or fibronectin (FN), to investigate the cellular phenotype of primary fibroblasts harboring a COL4A2+/G702D mutation. FN nanonetworks assembled on poly(ethyl acrylate) (PEA) induced increased deposition and assembly of collagen IV in COL4A2+/G702D cells, which was associated with reduced ER size and enhanced levels of protein chaperones such as BIP, suggesting increased protein folding capacity of cells. FN nanonetworks on PEA also partially rescued the reduced stiffness of the deposited matrix and cells, and enhanced cell adhesion through β1-mediated signaling and actin-myosin contractility, effectively rescuing some of the cellular phenotypes associated with COL4A1/4A2 mutations. Collectively, these results suggest that biomaterials are able to shape the matrix and cellular phenotype of the COL4A2+/G702D mutation in patient-derived cells.