JZ
Jingjing Zhan
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
1
h-index:
30
/
i10-index:
65
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Regulatory Networks of Coresident Subgenomes during Rapid Fiber Cell Elongation in Upland Cotton

Lan Yang et al.Sep 1, 2024
Cotton, an intriguing plant species shaped by polyploidization, evolution, and domestication, holds particular interest due to the complex mechanisms governing fiber traits across its two subgenomes. However, the regulatory elements or transcriptional networks between subgenomes during fiber elongation remain elusive. Here, we analyzed 1,462 cotton fiber samples to reconstruct gene expression regulatory networks influencing fiber cell elongation. Inter-subgenomic eQTLs largely dictate gene transcription, with a notable tendency for the D subgenome to regulate A subgenome eGenes. This regulation showcases synchronized homoeologous gene expression driven by colocalized eQTLs and divergent patterns that diminish genetic correlations, thus leading to preferential expression in the A and D subgenomes. Hotspot456 emerged as a key regulator of fiber initiation and elongation, and artificial selection of trans-eQTLs in hotspot456 positively regulating KCS1 has facilitated cell elongation. To elucidate the roles of trans-eQTL in improved fiber breeding, experimentation confirmed the inhibition of GhTOL9 by a specific trans-eQTL via GhWRKY28, which negatively impacts fiber elongation. We propose a model where the GhWRKY28-GhTOL9 module, through the Endosomal Sorting Complex Required for Transport pathway, regulates this process. This research significantly advances our understanding of cotton's evolutionary, domestication processes, and the intricate regulatory mechanisms underlying significant plant traits.
0
Citation1
0
Save
0

Effects of nutrient ratios on a newly harmful dinoflagellate Heterocapsa bohaiensis: evidence from growth, toxicity and transcriptome analyses

Yiwen Zhang et al.Sep 1, 2024
Heterocapsa bohaiensis is a newly identified dinoflagellate species that causes harmful blooms in coastal areas in China, Malaysian, and New Caledonian. These blooms have led to substantial economic losses for local aquaculture. Previous studies have mainly focused on understanding the toxicity of H. bohaiensis. However, the causes of H. bohaiensis blooms remain unknown. In this study, we aimed to ascertain nitrogen (N) and phosphorus (P) requirements for the growth and reproduction of H. bohaiensis. Additionally, we sought to understand the functional mechanisms by comparing the transcriptomes of H. bohaiensis under nutrient-limited conditions and control conditions. The results revealed a wide range of acceptable N:P ratios for H. bohainensis, attributed to a mechanism involving nutrient storage, which allowed H. bohainensis to sustain its growth even when either nitrate or phosphate was depleted. Higher N:P ratios (> 27.5) were more conducive to the growth of H. bohainensis than f/2 medium or low ratios, which is related to the N:P ratios absorbed by H. bohainensis. The toxicity of H. bohainensis was significantly enhanced in N-limited or P-limited states. These findings underscore the significance of the physiological metabolism of H. bohainensis in adapting to environmental stresses induced by human activities and establishing the dominance of blooms.
0

Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms

Qian Meng et al.Sep 4, 2024
Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to‑carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.
4

The cryptic step in biogeochemical Tellurium (Te) cycle: Indirect elementary Te oxidation mediated by manganese-oxidizing bacterium (MnOB)

Yuqing Liu et al.Feb 23, 2023
Abstract Tellurium (Te) is a rare element in the chalcogen group, and its biogeochemical cycle has been investigated for decades. As the most soluble Te species, tellurite (Te(IV)) possess the highest toxicity to the organisms. Chemical or biological Te(IV) reduction to elemental tellurium (Te 0 ) is generally considered as an effective detoxification route for Te(IV)-containing wastewater. Here, we reported a previously overlooked Te 0 oxidation process mediated by manganese-oxidizing bacterium Bacillus sp. FF-1. This strain has both Mn(II)-oxidizing and Te(IV)-reducing activities, which could produce manganese oxides (BioMnOx) and Te 0 (BioTe 0 ) when incubating with Mn(II) and Te(IV), respectively. Te(IV) can co-precipitated with Mn(II) to form highly stable Te(IV)-Mn(II) compounds with low bioavailability. While when 5 mM Mn(II) was added after incubating 0.1 mM or 1 mM Te(IV) with strain FF-1 for 16 hours, the BioTe 0 were certainly re-oxidized to Te(IV) by BioMnOx according to the results of X-ray photoelectron spectra (XPS) and Transmission electron microscope (TEM). The chemogenic and exogenous biogenic Te 0 can also be oxidized by the BioMnOx, although with different rates. This study highlights a new transformation process of tellurium species mediated by manganese-oxidizing bacteria, revealing that the environmental fate and ecological risks of Te 0 needed to be re-evaluated. Importance Biogeochemical cycle of Te mediated by bacteria mainly focus on the Tellurite reduction and methylation. In this study, the indirect tellurium (Te 0 ) oxidation driven by manganese-oxidizing bacterium is firstly confirmed. As Te0 usually considered as a stable and safe products during Te(IV)-containing wastewater treatment, we suppose the ecological risks of Te 0 needed to be re-evaluated due to the possible oxidation by manganese-oxidizing bacterium and its generated manganese oxides.