SC
Silvia Corrochano
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
724
h-index:
19
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

α-Synuclein impairs macroautophagy: implications for Parkinson’s disease

Ashley Winslow et al.Sep 20, 2010
+10
S
C
A
Parkinson’s disease (PD) is characterized pathologically by intraneuronal inclusions called Lewy bodies, largely comprised of α-synuclein. Multiplication of the α-synuclein gene locus increases α-synuclein expression and causes PD. Thus, overexpression of wild-type α-synuclein is toxic. In this study, we demonstrate that α-synuclein overexpression impairs macroautophagy in mammalian cells and in transgenic mice. Our data show that α-synuclein compromises autophagy via Rab1a inhibition and Rab1a overexpression rescues the autophagy defect caused by α-synuclein. Inhibition of autophagy by α-synuclein overexpression or Rab1a knockdown causes mislocalization of the autophagy protein, Atg9, and decreases omegasome formation. Rab1a, α-synuclein, and Atg9 all regulate formation of the omegasome, which marks autophagosome precursors.
0
Citation724
0
Save
0

TDP-43-M323K causes abnormal brain development and progressive cognitive and motor deficits associated with mislocalised and increased levels of TDP-43

Juan Godoy-Corchuelo et al.Dec 27, 2023
+19
M
R
J
Abstract TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as “TDP-43 proteinopathies”. Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene ( TARDBP ) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.
0

Loss of Frrs1l disrupts synaptic AMPA receptor function, and results in neurodevelopmental, motor, cognitive and electrographical abnormalities

Michelle Stewart et al.Aug 9, 2018
+10
R
G
M
Loss of function mutations in the human AMPA receptor-associated protein, ferric chelate reductase 1-like (FRRS1L), are associated with a devastating neurological condition incorporating choreoathetosis, cognitive deficits and epileptic encephalopathies. Furthermore, evidence from overexpression and ex vivo studies have implicated FRRS1L in AMPA receptor biogenesis and assembly, suggesting that changes in glutamatergic signalling might underlie the disorder. Here, we investigated the neurological and neurobehavioural correlates of the disorder using a mouse Frrs1l null mutant. The study revealed several neurological defects that mirrored those seen in human patients. We established that mice lacking Frrs1l suffered from a broad spectrum of early-onset motor deficits with no progressive, age-related deterioration. Moreover, Frrs1l-/- mice were hyperactive irrespective of test environment, exhibited working memory deficits and displayed significant sleep fragmentation. Longitudinal electroencephalographic recordings also revealed abnormal EEG in Frrs1l-/- mice. Parallel investigations into disease aetiology identified a specific deficiency in AMPA receptor levels in the brain of Frrs1l-/- mice, while the general levels of several other synaptic components remained unchanged with no obvious alterations in the number of synapses. Furthermore, we established that Frrsl1 deletion results in glycosylation deficits in GLUA2 and GLUA4 AMPA receptor proteins, leading to cytoplasmic retention and a reduction of those specific AMPA receptor levels in the postsynaptic membrane. Overall, this study determines, for the first time in vivo, how loss of FRRS1L function can affect glutamatergic signalling and provides mechanistic insight into the development and progression of a human hyperkinetic disorder.
6

FUSDelta14 mutation impairs normal brain development and causes systemic metabolic alterations

Juan Godoy-Corchuelo et al.Feb 24, 2023
+13
A
Z
J
ABSTRACT FUS (Fused in sarcoma) is a ubiquitously expressed DNA/RNA binding protein. Mutations in FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS), as in the case with the FUSDelta14 mutation. While most studies have focused on the role of FUS in motor neuron degeneration, little is known about the effect of FUS mutations in the whole body, and the impact of FUS mutations in the correct development of the nervous system. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the FUSDelta14 mutation in homozygosity. RNA sequencing was conducting in six different tissues (frontal cortex, spinal cord, tibialis anterior muscle, white and brown adipose tissue and liver) to identify the genes and pathways altered by the FUSDelta14 mutant protein in the systemic transcriptome. Additionally, brain structural magnetic resonance imaging (MRI) and histological characterisation was conducted in young mice to study the role of FUS mutation in the brain development. FUS mutant protein was upregulated and mislocalised in the cytoplasm in most cells of the tissues analysed. We identified few genes commonly altered in all tissues by this mutation, although most genes and pathways affected were generally tissue-specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. MRI brain scans revealed that homozygous FUSDelta14 brains were smaller and displayed significant morphological alterations including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. We demonstrated that the disease aetiology of FUS mutations can include neurodevelopmental and systemic alterations, which should be taken into consideration in the clinic.
16

Generation, quality control, and analysis of the first genomically humanised knock-in mice for the ALS/FTD genes SOD1, TARDBP (TDP-43), and FUS

Anny Devoy et al.Jul 5, 2021
+25
G
D
A
SUMMARY Amyotrophic lateral sclerosis - frontotemporal dementia spectrum disorder (ALS/FTD) is a complex neurodegenerative disease; up to 10% of cases are familial, usually arising from single dominant mutations in >30 causative genes. Transgenic mouse models that overexpress human ALS/FTD causative genes have been the preferred organism for in vivo modelling. However, while conferring human protein biochemistry, these overexpression models are not ideal for dosage-sensitive proteins such as TDP-43 or FUS. We have created three next-generation genomically humanised knock-in mouse models for ALS/FTD research, by replacing the entire mouse coding region of Sod1 , Tardbp (TDP-43) and Fus , with their human orthologues to preserve human protein biochemistry, with exons and introns intact to enable future modelling of coding or non-coding mutations and variants and to preserve human splice variants. In generating these mice, we have established a new-standard of quality control: we demonstrate the utility of indirect capture for enrichment of a region of interest followed by Oxford Nanopore sequencing for robustly characterising large knock-in alleles. This approach confirmed that targeting occurred at the correct locus and to map homologous recombination events. Furthermore, extensive expression data from the three lines shows that homozygous humanised animals only express human protein, at endogenous levels. Characterisation of humanised FUS animals showed that they are phenotypically normal compared to wildtype littermates throughout their lifespan. These humanised mouse strains are critically needed for preclinical assessment of interventions, such as antisense oligonucleotides (ASOs), to modulate expression levels in patients, and will serve as templates for the addition of human ALS/FTD mutations to dissect disease pathomechanisms.
0

In vivo diagnosis of TDP-43 proteinopathies: in search of biomarkers of clinical use

Juan López‐Carbonero et al.Jun 3, 2024
+4
L
I
J
Abstract TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer’s disease, Huntington’s disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.