FS
Fredrick Schumacher
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(75% Open Access)
Cited by:
6,211
h-index:
87
/
i10-index:
225
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiple loci identified in a genome-wide association study of prostate cancer

Gilles Thomas et al.Feb 10, 2008
We followed our initial genome-wide association study (GWAS) of 527,869 SNPs on 1,172 individuals with prostate cancer and 1,157 controls of European origin—nested in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial prospective study—by testing 26,958 SNPs in four independent studies (total of 3,941 cases and 3,964 controls). In the combined joint analysis, we confirmed three previously reported loci (two independent SNPs at 8q24 and one in HNF1B (formerly known as TCF2 on 17q); P < 10−10). In addition, loci on chromosomes 7, 10 (two loci) and 11 were highly significant (between P < 7.31 × 10−13 and P < 2.14 × 10−6). Loci on chromosome 10 include MSMB, which encodes β-microseminoprotein, a primary constituent of semen and a proposed prostate cancer biomarker, and CTBP2, a gene with antiapoptotic activity; the locus on chromosome 7 is at JAZF1, a transcriptional repressor that is fused by chromosome translocation to SUZ12 in endometrial cancer. Of the nine loci that showed highly suggestive associations (P < 2.5 × 10−5), four best fit a recessive model and included candidate susceptibility genes: CPNE3, IL16 and CDH13. Our findings point to multiple loci with moderate effects associated with susceptibility to prostate cancer that, taken together, in the future may predict high risk in select individuals.
0
Citation896
0
Save
0

Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci

Fredrick Schumacher et al.Jun 8, 2018
Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P < 5.0 × 10−8) with PrCa and one locus significantly associated with early-onset PrCa (≤55 years). Our findings include missense variants rs1800057 (odds ratio (OR) = 1.16; P = 8.2 × 10−9; G>C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10−9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55–2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04–6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1. A large meta-analysis combining genome-wide and custom high-density genotyping array data identifies 63 new susceptibility loci for prostate cancer, enhancing fine-mapping efforts and providing insights into the underlying biology.
0
Citation750
0
Save
0

RAD51B in Familial Breast Cancer

Liisa Pelttari et al.May 5, 2016
Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11-1.19, P = 8.88 x 10-16) and among familial cases (OR: 1.24, 95% CI: 1.16-1.32, P = 6.19 x 10-11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk.
0
Citation670
0
Save
0

MicroRNA Related Polymorphisms and Breast Cancer Risk

Frans Hogervorst et al.Nov 12, 2014
Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.
0
Citation637
0
Save
0

Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

Kyriaki Michailidou et al.Mar 9, 2015
Doug Easton and colleagues report the results of a large-scale genome-wide association study of breast cancer. They discover 15 new susceptibility loci and highlight likely target genes in several of the newly associated regions. Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10−8. Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
0
Citation560
0
Save
0

Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

Rosalind Eeles et al.Mar 27, 2013
Rosalind Eeles and colleagues report meta-analysis of genome-wide association studies for prostate cancer and genotyping on the custom iCOGS array in 25,074 cases and 24,272 controls from 32 studies available in the PRACTICAL Consortium. They identify 23 new prostate cancer susceptibility loci, 20 of which are associated with both aggressive and non-aggressive disease. Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10−8). More than 70 prostate cancer susceptibility loci, explaining ∼30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies.
0
Citation527
0
Save
0

Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United States

Paige Maas et al.May 26, 2016

Importance

 An improved model for risk stratification can be useful for guiding public health strategies of breast cancer prevention. 

Objective

 To evaluate combined risk stratification utility of common low penetrant single nucleotide polymorphisms (SNPs) and epidemiologic risk factors. 

Design, Setting, and Participants

 Using a total of 17 171 cases and 19 862 controls sampled from the Breast and Prostate Cancer Cohort Consortium (BPC3) and 5879 women participating in the 2010 National Health Interview Survey, a model for predicting absolute risk of breast cancer was developed combining information on individual level data on epidemiologic risk factors and 24 genotyped SNPs from prospective cohort studies, published estimate of odds ratios for 68 additional SNPs, population incidence rate from the National Cancer Institute-Surveillance, Epidemiology, and End Results Program cancer registry and data on risk factor distribution from nationally representative health survey. The model is used to project the distribution of absolute risk for the population of white women in the United States after adjustment for competing cause of mortality. 

Exposures

 Single nucleotide polymorphisms, family history, anthropometric factors, menstrual and/or reproductive factors, and lifestyle factors. 

Main Outcomes and Measures

 Degree of stratification of absolute risk owing to nonmodifiable (SNPs, family history, height, and some components of menstrual and/or reproductive history) and modifiable factors (body mass index [BMI; calculated as weight in kilograms divided by height in meters squared], menopausal hormone therapy [MHT], alcohol, and smoking). 

Results

 The average absolute risk for a 30-year-old white woman in the United States developing invasive breast cancer by age 80 years is 11.3%. A model that includes all risk factors provided a range of average absolute risk from 4.4% to 23.5% for women in the bottom and top deciles of the risk distribution, respectively. For women who were at the lowest and highest deciles of nonmodifiable risks, the 5th and 95th percentile range of the risk distribution associated with 4 modifiable factors was 2.9% to 5.0% and 15.5% to 25.0%, respectively. For women in the highest decile of risk owing to nonmodifiable factors, those who had low BMI, did not drink or smoke, and did not use MHT had risks comparable to an average woman in the general population. 

Conclusions and Relevance

 This model for absolute risk of breast cancer including SNPs can provide stratification for the population of white women in the United States. The model can also identify subsets of the population at an elevated risk that would benefit most from risk-reduction strategies based on altering modifiable factors. The effectiveness of this model for individual risk communication needs further investigation.
0
Citation321
0
Save
0

Generalization and Dilution of Association Results from European GWAS in Populations of Non-European Ancestry: The PAGE Study

Christopher Carlson et al.Sep 17, 2013
The vast majority of genome-wide association study (GWAS) findings reported to date are from populations with European Ancestry (EA), and it is not yet clear how broadly the genetic associations described will generalize to populations of diverse ancestry. The Population Architecture Using Genomics and Epidemiology (PAGE) study is a consortium of multi-ancestry, population-based studies formed with the objective of refining our understanding of the genetic architecture of common traits emerging from GWAS. In the present analysis of five common diseases and traits, including body mass index, type 2 diabetes, and lipid levels, we compare direction and magnitude of effects for GWAS-identified variants in multiple non-EA populations against EA findings. We demonstrate that, in all populations analyzed, a significant majority of GWAS-identified variants have allelic associations in the same direction as in EA, with none showing a statistically significant effect in the opposite direction, after adjustment for multiple testing. However, 25% of tagSNPs identified in EA GWAS have significantly different effect sizes in at least one non-EA population, and these differential effects were most frequent in African Americans where all differential effects were diluted toward the null. We demonstrate that differential LD between tagSNPs and functional variants within populations contributes significantly to dilute effect sizes in this population. Although most variants identified from GWAS in EA populations generalize to all non-EA populations assessed, genetic models derived from GWAS findings in EA may generate spurious results in non-EA populations due to differential effect sizes. Regardless of the origin of the differential effects, caution should be exercised in applying any genetic risk prediction model based on tagSNPs outside of the ancestry group in which it was derived. Models based directly on functional variation may generalize more robustly, but the identification of functional variants remains challenging.
0
Citation248
0
Save
Load More