AB
Anna Bachmann
Author with expertise in Malaria
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
4
h-index:
19
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
13

Identification of novel inner membrane complex and apical annuli proteins of the malaria parasitePlasmodium falciparum

Jan Wichers-Misterek et al.Feb 3, 2021
ABSTRACT The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of twelve known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represent structures described as apical annuli in Toxoplasma gondii . Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
13
Citation2
0
Save
4

Gene expression profiling of malaria parasites reveals common virulence gene expression in adult first-time infected patients and severe cases

Jan Wichers-Misterek et al.Nov 14, 2020
Abstract Sequestration of Plasmodium falciparum -infected erythrocytes to host endothelium through the parasite-derived Pf EMP1 adhesion proteins is central to the development of malaria pathogenesis. Pf EMP1 proteins have diversified and expanded to encompass many sequence variants conferring each parasite a similar array of human endothelial receptor binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum infected adult travelers returning to Germany. Patients were categorized into either malaria naïve (n=15) or pre-exposed (n=17), and into severe (n=8) or non-severe (n=24) cases. For differential expression analysis of Pf EMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with Pf EMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding Pf EMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic Pf EMP1 variants are more common in patients with a naïve immune status and/or adverse inflammatory host responses to first infections favors growth of EPCR-binding parasites.
4
Citation1
0
Save
10

A microtubule associated protein is essential for malaria parasite transmission

Jan Wichers-Misterek et al.Oct 20, 2022
ABSTRACT Mature gametocytes of Plasmodium ( P .) falciparum display a banana (falciform) shape conferred by a complex array of subpellicular microtubules (SPMT) associated to the inner membrane complex (IMC). Microtubule associated proteins (MAPs) define MT populations and modulate interaction to pellicular components. Several MAPs have been identified in Toxoplasma gondii and homologues can be found in the genome of Plasmodium species, but the function of these proteins for asexual and sexual development of malaria parasites is still unknown. Here we identified a novel subpellicular MAP, termed SPM3, that is conserved within the genus Plasmodium ., especially within the Laverania subgenus, but absent in other Apicomplexa. Conditional knockdown and targeted gene disruption of Pfspm3 in P. falciparum cause severe morphological defects during gametocytogenesis leading to round, non-falciform gametocytes with an aberrant SPMT pattern. In contrast, Pbspm3 knockout in P. berghei , a species with round gametocytes, caused no defect in gametocytogenesis, but sporozoites displayed an aberrant motility and a dramatic defect in sporozoite invasion of salivary glands leading to a decreased efficiency in transmission. Electron microscopy revealed a dissociation of the SPMT from the IMC in Pbspm3 knockout parasites suggesting a function of SPM3 in anchoring MTs to the IMC. Overall, our results highlight SPM3 as a pellicular component with essential functions for malaria parasite transmission. IMPORTANCE A key structural feature driving the transition between different life cycle stages of the malaria parasite is the unique three membrane “pellicle”, consisting of the parasite plasma membrane (PPM) and a double membrane structure underlying the PPM termed the “inner membrane complex” (IMC). Additionally, there are numerous linearly arranged intramembranous particles (IMPs) linked to the IMC, which likely link the IMC to the subpellicular microtubule cytoskeleton. Here we identify, localize and characterize a novel subpellicular microtubule associated protein unique to the genus Plasmodium ( P .). The knockout of this protein in the human infecting P. falciparum species result in malformed gametocytes and aberrant microtubules. We confirmed the microtubule association in the P. berghei rodent malaria homologue and show that its knockout results in a perturbated microtubule architecture, aberrant sporozoite motility and decreased transmission efficiency.
10
Citation1
0
Save
9

A novel computational pipeline forvargene expression augments the discovery of changes in thePlasmodium falciparumtranscriptome during transition fromin vivoto short-termin vitroculture

Clare Andradi-Brown et al.Mar 24, 2023
Abstract The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al ., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al ., 2021 on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.
1

Characterization of apicomplexan amino acid transporters (ApiATs) in the malaria parasite Plasmodium falciparum

Jan Wichers-Misterek et al.Sep 10, 2021
ABSTRACT During the symptomatic human blood phase, malaria parasites replicate within red blood cells. Parasite proliferation relies on the uptake of nutrients, such as amino acids, from the host cell and the blood plasma, requiring transport across multiple membranes. Amino acids are delivered to the parasite through the parasite surrounding vacuolar compartment by specialized nutrient-permeable channels of the erythrocyte membrane and the parasitophorous vacuole membrane (PVM). However, further transport of amino acid across the parasite plasma membrane (PPM) is currently not well characterized. In this study, we focused on a family of Apicomplexan amino acid transporters (ApiATs) that comprises five members in Plasmodium falciparum . First, we localized four of the Pf ApiATs at the PPM using endogenous GFP-tagging. Next, we applied reverse genetic approaches to probe into their essentiality during asexual replication and gametocytogenesis. Upon inducible knockdown and targeted gene disruption a reduced asexual parasite proliferation was detected for Pf ApiAT2 and Pf ApiAT4. Functional inactivation of individual Pf ApiATs targeted in this study had no effect on gametocyte development. Our data suggest that individual Pf ApiATs are partially redundant during asexual in vitro proliferation and fully redundant during gametocytogenesis of P. falciparum parasites. IMPORTANCE Malaria parasites live and multiply inside cells. To facilitate their extremely fast intracellular proliferation they hijack and transform their host cells. This also requires the active uptake of nutrients, such as amino acids, from the host cell and the surrounding environment through various membranes that are the consequence of the parasite’s intracellular lifestyle. In this manuscript we focus on a family of putative amino acid transporters termed ApiAT. We show expression and localization of four transporters in the parasite plasma membrane of Plasmodium falciparum -infected erythrocytes that represent one interface of the pathogen to its host cell. We probed into the impact of functional inactivation of individual transporters on parasite growth in asexual and sexual blood stages of P. falciparum and reveal that only two of them show a modest but significant reduction in parasite proliferation but no impact on gametocytogenesis pointing towards redundancy within this transporter family.
1

PMRT1, aPlasmodiumspecific parasite plasma membrane transporter is essential for asexual and sexual blood stage development

Jan Wichers-Misterek et al.Dec 24, 2021
Abstract Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum , an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures – the food vacuole, the apicoplast, and the parasite plasma membrane – and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1, PF3D7_1135300), a unique Plasmodium -specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium . Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. Importance Plasmodium falciparum -infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes do not only facilitate movement of nutrients, metabolites and other molecules between these compartments, but are common therapeutic targets and can also confer antimalarial drug resistance. Orphan membrane transporter in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent to host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed into their importance during asexual parasite growth using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.