KS
Kensaku Shojima
Author with expertise in Induction and Differentiation of Pluripotent Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
165
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice

Kristen Browder et al.Mar 7, 2022
+24
M
P
K
Partial reprogramming by expression of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) for short periods of time restores a youthful epigenetic signature to aging cells and extends the life span of a premature aging mouse model. However, the effects of longer-term partial reprogramming in physiologically aging wild-type mice are unknown. Here, we performed various long-term partial reprogramming regimens, including different onset timings, during physiological aging. Long-term partial reprogramming lead to rejuvenating effects in different tissues, such as the kidney and skin, and at the organismal level; duration of the treatment determined the extent of the beneficial effects. The rejuvenating effects were associated with a reversion of the epigenetic clock and metabolic and transcriptomic changes, including reduced expression of genes involved in the inflammation, senescence and stress response pathways. Overall, our observations indicate that partial reprogramming protocols can be designed to be safe and effective in preventing age-related physiological changes. We further conclude that longer-term partial reprogramming regimens are more effective in delaying aging phenotypes than short-term reprogramming.
16
Citation117
5
Save
0

In vivo partial cellular reprogramming enhances liver plasticity and regeneration

Tomoaki Hishida et al.Apr 1, 2022
+33
Y
M
T
Mammals have limited regenerative capacity, whereas some vertebrates, like fish and salamanders, are able to regenerate their organs efficiently. The regeneration in these species depends on cell dedifferentiation followed by proliferation. We generate a mouse model that enables the inducible expression of the four Yamanaka factors (Oct-3/4, Sox2, Klf4, and c-Myc, or 4F) specifically in hepatocytes. Transient in vivo 4F expression induces partial reprogramming of adult hepatocytes to a progenitor state and concomitantly increases cell proliferation. This is indicated by reduced expression of differentiated hepatic-lineage markers, an increase in markers of proliferation and chromatin modifiers, global changes in DNA accessibility, and an acquisition of liver stem and progenitor cell markers. Functionally, short-term expression of 4F enhances liver regenerative capacity through topoisomerase2-mediated partial reprogramming. Our results reveal that liver-specific 4F expression in vivo induces cellular plasticity and counteracts liver failure, suggesting that partial reprogramming may represent an avenue for enhancing tissue regeneration.
0
Citation48
0
Save
4

Therapeutic strategy for spinal muscular atrophy by combining gene supplementation and genome editing

Fumiyuki Hatanaka et al.Apr 6, 2023
+8
K
E
F
Abstract Defect in the SMN1 gene causes spinal muscular atrophy (SMA), which shows loss of motor nerve cells, muscle weakness and atrophy. While current treatment strategies, including small molecules or viral vectors, have been reported to improve motor function and survival, an ultimate and long-term treatment to correct SMA endogenous mutations and improve its phenotypes is still highly challenging. We have previously developed a CRISPR-Cas9 based homology-independent targeted integration (HITI) strategy, which allowed for unidirectional DNA knock-in in both dividing and non-dividing cells in vivo . Here, we demonstrated its utility by correcting a SMA mutation in mice, and when combined with Smn1 cDNA supplementation show SMA long-term therapeutic benefits in mice. Our observations may provide new avenues for long term and efficient treatment of inherited diseases. Summary The Gene-DUET strategy by combining cDNA supplementation and genome editing was sufficient to ameliorate SMA phenotypes in mouse model in vivo .