CB
Claudia Buß
Author with expertise in Impact of Maternal Mental Health on Offspring
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
2,399
h-index:
61
/
i10-index:
135
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Children's Brain Development Benefits from Longer Gestation

Elysia Davis et al.Jan 1, 2011
+5
L
C
E
Disruptions to brain development associated with shortened gestation place individuals at risk for the development of behavioral and psychological dysfunction throughout the lifespan. The purpose of the present study was to determine if the benefit for brain development conferred by increased gestational length exists on a continuum across the gestational age spectrum among healthy children with a stable neonatal course. Neurodevelopment was evaluated with structural magnetic resonance imaging in 100 healthy right-handed 6- to 10-year-old children born between 28 and 41 gestational weeks with a stable neonatal course. Data indicate that a longer gestational period confers an advantage for neurodevelopment. Longer duration of gestation was associated with region-specific increases in gray matter density. Further, the benefit of longer gestation for brain development was present even when only children born full term were considered. These findings demonstrate that even modest decreases in the duration of gestation can exert profound and lasting effects on neurodevelopment for both term and preterm infants and may contribute to long-term risk for health and disease.
0
Citation863
0
Save
0

Deactivation of the Limbic System During Acute Psychosocial Stress: Evidence from Positron Emission Tomography and Functional Magnetic Resonance Imaging Studies

Jens Pruessner et al.Aug 9, 2007
+7
N
K
J
Background Stress-induced metabolic changes can have detrimental health effects. Newly developed paradigms to investigate stress in neuroimaging environments allow the assessment of brain activation changes in association with the perception of and the metabolic response to stress. Methods We exposed human subjects to a psychosocial stressor in one positron emission tomography (n = 10) and one functional magnetic resonance imaging (fMRI; n = 40) experiment. Results We observed a profound deactivation of limbic system components including hippocampus, hypothalamus, medio-orbitofrontal cortex and anterior cingulate cortex in subjects who reacted to the stressor with a significant increase of the endocrine stress marker cortisol. Further, in the fMRI study, the degree of deactivation in the hippocampus was correlated with the release of cortisol in response to the stress task. Conclusions The observed deactivation of limbic system structures suggests elevated activation at rest and during nonstressful situations. A model is proposed where the observed reduction in limbic system activity is essential for the initiation of the stress response. Stress-induced metabolic changes can have detrimental health effects. Newly developed paradigms to investigate stress in neuroimaging environments allow the assessment of brain activation changes in association with the perception of and the metabolic response to stress. We exposed human subjects to a psychosocial stressor in one positron emission tomography (n = 10) and one functional magnetic resonance imaging (fMRI; n = 40) experiment. We observed a profound deactivation of limbic system components including hippocampus, hypothalamus, medio-orbitofrontal cortex and anterior cingulate cortex in subjects who reacted to the stressor with a significant increase of the endocrine stress marker cortisol. Further, in the fMRI study, the degree of deactivation in the hippocampus was correlated with the release of cortisol in response to the stress task. The observed deactivation of limbic system structures suggests elevated activation at rest and during nonstressful situations. A model is proposed where the observed reduction in limbic system activity is essential for the initiation of the stress response.
0

Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems

Claudia Buß et al.Apr 23, 2012
+3
B
E
C
Stress-related variation in the intrauterine milieu may impact brain development and emergent function, with long-term implications in terms of susceptibility for affective disorders. Studies in animals suggest limbic regions in the developing brain are particularly sensitive to exposure to the stress hormone cortisol. However, the nature, magnitude, and time course of these effects have not yet been adequately characterized in humans. A prospective, longitudinal study was conducted in 65 normal, healthy mother–child dyads to examine the association of maternal cortisol in early, mid-, and late gestation with subsequent measures at approximately 7 y age of child amygdala and hippocampus volume and affective problems. After accounting for the effects of potential confounding pre- and postnatal factors, higher maternal cortisol levels in earlier but not later gestation was associated with a larger right amygdala volume in girls (a 1 SD increase in cortisol was associated with a 6.4% increase in right amygdala volume), but not in boys. Moreover, higher maternal cortisol levels in early gestation was associated with more affective problems in girls, and this association was mediated, in part, by amygdala volume. No association between maternal cortisol in pregnancy and child hippocampus volume was observed in either sex. The current findings represent, to the best of our knowledge, the first report linking maternal stress hormone levels in human pregnancy with subsequent child amygdala volume and affect. The results underscore the importance of the intrauterine environment and suggest the origins of neuropsychiatric disorders may have their foundations early in life.
0
Citation556
0
Save
0

High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children

Claudia Buß et al.Aug 12, 2009
+2
L
E
C
Because the brain undergoes dramatic changes during fetal development it is vulnerable to environmental insults. There is evidence that maternal stress and anxiety during pregnancy influences birth outcome but there are no studies that have evaluated the influence of stress during human pregnancy on brain morphology. In the current prospective longitudinal study we included 35 women for whom serial data on pregnancy anxiety was available at 19 (±0.83), 25 (±0.9) and 31 (±0.9) weeks gestation. When the offspring from the target pregnancy were between 6 and 9 years of age, their neurodevelopmental stage was assessed by a structural MRI scan. With the application of voxel-based morphometry, we found regional reductions in gray matter density in association with pregnancy anxiety after controlling for total gray matter volume, age, gestational age at birth, handedness and postpartum perceived stress. Specifically, independent of postnatal stress, pregnancy anxiety at 19 weeks gestation was associated with gray matter volume reductions in the prefrontal cortex, the premotor cortex, the medial temporal lobe, the lateral temporal cortex, the postcentral gyrus as well as the cerebellum extending to the middle occipital gyrus and the fusiform gyrus. High pregnancy anxiety at 25 and 31 weeks gestation was not significantly associated with local reductions in gray matter volume.This is the first prospective study to show that a specific temporal pattern of pregnancy anxiety is related to specific changes in brain morphology. Altered gray matter volume in brain regions affected by prenatal maternal anxiety may render the developing individual more vulnerable to neurodevelopmental and psychiatric disorders as well as cognitive and intellectual impairment.
0
Citation403
0
Save
1

Gestational and postnatal age associations for striatal tissue iron deposition in early infancy

Laura Cabral et al.Jun 30, 2023
+10
W
J
L
Striatal development is crucial for later motor, cognitive, and reward behavior, but age-related change in striatal physiology during the neonatal period remains understudied. An MRI-based measure of tissue iron deposition, T2*, is a non-invasive way to probe striatal physiology neonatally, linked to dopaminergic processing and cognition in children and adults. Striatal subregions have distinct functions that may come online at different time periods in early life. To identify if there are critical periods before or after birth, we measured if striatal iron accrued with gestational age at birth [range=34.57-41.85 weeks] or postnatal age at scan [range=5-64 days], using MRI to probe the T2* signal in N=83 neonates in three striatal subregions. We found iron increased with postnatal age in the pallidum and putamen but not the caudate. No significant relationship between iron and gestational age was observed. Using a subset of infants scanned at preschool age (N=26), we show distributions of iron shift between timepoints. In infants, the pallidum had the least iron of the three regions but had the most by preschool age. Together, this provides evidence of distinct change for striatal subregions, a possible differentiation between motor and cognitive systems, identifying a mechanism that may impact future trajectories.Neonatal striatal tissue iron can be measured using the T2* signal from rsfMRInT2* changed with postnatal age in the pallidum and putamen but not in the caudatenT2* did not change with gestational age in any of the three regionsPatterns of iron deposition (nT2*) among regions shift from infancy to preschool.
11

Distinct Multivariate Structural Brain Profiles Are Related to Variations in Short- and Long-Delay Memory Consolidation Across Children and Young Adults

Iryna Schommartz et al.Aug 26, 2021
+6
F
P
I
Abstract From early to middle childhood, brain regions that underlie memory consolidation undergo profound maturational changes. However, there is little empirical investigation that directly relates age-related differences in brain structural measures to the memory consolidation processes. The present study examined system-level memory consolidations of intentionally studied object-location associations after one night of sleep (short delay) and after two weeks (long delay) in normally developing 5-to-7-year-old children (n = 50) and young adults (n = 39). Behavioural differences in memory consolidation were related to structural brain measures. Our results showed that children, in comparison to young adults, consolidate correctly learnt object-location associations less robustly over short and long delay. Moreover, using partial least squares correlation method, a unique multivariate profile comprised of specific neocortical (prefrontal, parietal, and occipital), cerebellar, and hippocampal subfield structures was found to be associated with variation in short-delay memory consolidation. A different multivariate profile comprised of a reduced set of brain structures, mainly consisting of neocortical (prefrontal, parietal, and occipital), and selective hippocampal subfield structures (CA1-2 and subiculum) was associated with variation in long-delay memory consolidation. Taken together, the results suggest that multivariate structural pattern of unique sets of brain regions are related to variations in short- and long-delay memory consolidation across children and young adults. RESEARCH HIGHLIGHTS Short- and long-delay memory consolidation is less robust in children than in young adults Short-delay brain profile comprised of hippocampal, cerebellar, and neocortical brain regions Long-delay brain profile comprised of neocortical and selected hippocampal brain regions. Brain profiles differ between children and young adults.
0

Variably methylated regions in the newborn epigenome: environmental, genetic and combined influences

Darina Czamara et al.Oct 17, 2018
+31
M
C
D
Background: Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. We examined the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs), defined as consecutive CpGs showing the highest variability of DNAm in 4 independent cohorts (PREDO, DCHS, UCI, MoBa, N=2,934). Results: We used Akaike's information criterion to test which factors best explained variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E) including maternal demographic, psychosocial and metabolism related phenotypes, genotypes in cis (G), or their additive (G+E) or interaction (GxE) effects. G+E and GxE models consistently best explained variability in DNAm of VMRs across the cohorts, with G explaining the remaining sites best. VMRs best explained by G, GxE or G+E, as well as their associated functional genetic variants (predicted using deep learning algorithms), were located in distinct genomic regions, with different enrichments for transcription and enhancer marks. Genetic variants of not only G and G+E models, but also of variants in GxE models were significantly enriched in genome wide association studies (GWAS) for complex disorders. Conclusion: Genetic and environmental factors in combination best explain DNAm at VMRs. The CpGs best explained by G, G+E or GxE are functionally distinct. The enrichment of GxE variants in GWAS for complex disorders supports their importance for disease risk.
0

Association of maternal fish consumption and ω-3 supplement use during pregnancy with child autism-related outcomes: results from a cohort consortium analysis

Kristen Lyall et al.Jul 1, 2024
+88
R
M
K
Prenatal fish intake is a key source of omega-3 (ω-3) polyunsaturated fatty acids needed for brain development, yet intake is generally low, and studies addressing associations with autism spectrum disorder (ASD) and related traits are lacking. This study aimed to examine associations of prenatal fish intake and ω-3 supplement use with both autism diagnosis and broader autism-related traits. Participants were drawn from 32 cohorts in the Environmental influences on Child Health Outcomes Cohort Consortium. Children were born between 1999 and 2019 and part of ongoing follow-up with data available for analysis by August 2022. Exposures included self-reported maternal fish intake and ω-3/fish oil supplement use during pregnancy. Outcome measures included parent report of clinician-diagnosed ASD and parent-reported autism-related traits measured by the Social Responsiveness Scale (SRS)-second edition (n = 3939 and v3609 for fish intake analyses, respectively; n = 4537 and n = 3925 for supplement intake analyses, respectively). In adjusted regression models, relative to no fish intake, fish intake during pregnancy was associated with reduced odds of autism diagnosis (odds ratio: 0.84; 95% confidence interval [CI]: 0.77, 0.92), and a modest reduction in raw total SRS scores (β: −1.69; 95% CI: −3.3, −0.08). Estimates were similar across categories of fish consumption from "any" or "less than once per week" to "more than twice per week." For ω-3 supplement use, relative to no use, no significant associations with autism diagnosis were identified, whereas a modest relation with SRS score was suggested (β: 1.98; 95% CI: 0.33, 3.64). These results extend previous work by suggesting that prenatal fish intake, but not ω-3 supplement use, may be associated with lower likelihood of both autism diagnosis and related traits. Given the low-fish intake in the United States general population and the rising autism prevalence, these findings suggest the need for better public health messaging regarding guidelines on fish intake for pregnant individuals.
1

Neural Correlates and Reinstatement of Recent and Remote Memory: A Comparison Between Children and Young Adults

Iryna Schommartz et al.May 11, 2023
+4
J
P
I
Abstract Memory consolidation tends to be less robust in childhood than adulthood. However, little is known about the corresponding functional differences in the developing brain that may underlie age-related differences in retention of memories over time. This study examined system-level memory consolidation of object-scene associations after learning (immediate delay), one night of sleep (short delay), as well as two weeks (long delay) in 5-to-7-year-old children (n = 49) and in young adults (n = 39), as a reference group with mature consolidation systems. Particularly, we characterized how functional neural activation and reinstatement of neural patterns change over time, assessed by functional magnetic resonance imaging combined with representational (dis)similarity analysis (RSA). Our results showed that memory consolidation in children was less robust (i.e., more forgetting) compared to young adults. For correctly retained remote memories, young adults showed increased neural activation from short to long delay in neocortical (parietal, prefrontal and occipital) and cerebellar brain regions, while children showed increased neural activation in prefrontal and decrease in neural activity in parietal brain regions over time. In addition, there was an overall attenuated scene-specific memory reinstatement of neural patterns in children compared to young adults. At the same time, we observed category-based reinstatement in medial-temporal, neocortical (prefrontal and parietal), and cerebellar brain regions only in children. Taken together, 5-to-7-year-old children, compared to young adults, show less robust memory consolidation, possibly due to difficulties in engaging in differentiated neural reinstatement in neocortical mnemonic regions during retrieval of remote memories, coupled with relying more on gist-like, category-based neural reinstatement. RESEARCH HIGHLIGHTS Children showed less robust memory consolidation across short and long delay compared to young adults. Neural activity for remote memory increases from short to long delay in neocortical (parietal, prefrontal and occipital) and cerebellar brain regions in young adults, but not in children. Children showed reduced scene-specific reinstatement of neural patterns compared to young adults. Children relied more on gist-like, category-based neural reinstatement in medial-temporal, neocortical prefrontal and parietal, and cerebellar brain regions.