DD
Danijel Djukovic
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
1,158
h-index:
30
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Altered proteome turnover and remodeling by short‐term caloric restriction or rapamycin rejuvenate the aging heart

Dao Dai et al.Feb 25, 2014
Summary Chronic caloric restriction (CR) and rapamycin inhibit the mechanistic target of rapamycin ( mTOR ) signaling, thereby regulating metabolism and suppressing protein synthesis. Caloric restriction or rapamycin extends murine lifespan and ameliorates many aging‐associated disorders; however, the beneficial effects of shorter treatment on cardiac aging are not as well understood. Using a recently developed deuterated‐leucine labeling method, we investigated the effect of short‐term (10 weeks) CR or rapamycin on the proteomics turnover and remodeling of the aging mouse heart. Functionally, we observed that short‐term CR and rapamycin both reversed the pre‐existing age‐dependent cardiac hypertrophy and diastolic dysfunction. There was no significant change in the cardiac global proteome (823 proteins) turnover with age, with a median half‐life 9.1 days in the 5‐month‐old hearts and 8.8 days in the 27‐month‐old hearts. However, proteome half‐lives of old hearts significantly increased after short‐term CR (30%) or rapamycin (12%). This was accompanied by attenuation of age‐dependent protein oxidative damage and ubiquitination. Quantitative proteomics and pathway analysis revealed an age‐dependent decreased abundance of proteins involved in mitochondrial function, electron transport chain, citric acid cycle, and fatty acid metabolism as well as increased abundance of proteins involved in glycolysis and oxidative stress response. This age‐dependent cardiac proteome remodeling was significantly reversed by short‐term CR or rapamycin, demonstrating a concordance with the beneficial effect on cardiac physiology. The metabolic shift induced by rapamycin was confirmed by metabolomic analysis.
0

Metabolic Signatures of Bacterial Vaginosis

Sujatha Srinivasan et al.Apr 15, 2015
ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. IMPORTANCE Bacterial vaginosis (BV) is a common but highly enigmatic condition that is associated with adverse outcomes for women and their neonates. Small molecule metabolites in the vagina may influence host physiology, affect microbial community composition, and impact risk of adverse health outcomes, but few studies have comprehensively studied the metabolomics profile of BV. Here, we used mass spectrometry to link specific metabolites with particular bacteria detected in the human vagina by PCR. BV was associated with strong metabolic signatures across multiple pathways affecting amino acid, carbohydrate, and lipid metabolism, highlighting the profound metabolic changes in BV. These signatures were associated with the presence and concentrations of particular vaginal bacteria, including some bacteria yet to be cultivated, thereby providing clues as to the microbial origin of many metabolites. Insights from this study provide opportunities for developing new diagnostic markers of BV and novel approaches for treatment or prevention of BV.
0
Citation259
0
Save
0

EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape

Seung-Oe Lim et al.Jan 13, 2016
Oncogenic signaling reprograms cancer cell metabolism to augment the production of glycolytic metabolites in favor of tumor growth. The ability of cancer cells to evade immunosurveillance and the role of metabolic regulators in T-cell functions suggest that oncogene-induced metabolic reprogramming may be linked to immune escape. EGF signaling, frequently dysregulated in triple-negative breast cancer (TNBC), is also associated with increased glycolysis. Here, we demonstrated in TNBC cells that EGF signaling activates the first step in glycolysis, but impedes the last step, leading to an accumulation of metabolic intermediates in this pathway. Furthermore, we showed that one of these intermediates, fructose 1,6 bisphosphate (F1,6BP), directly binds to and enhances the activity of the EGFR, thereby increasing lactate excretion, which leads to inhibition of local cytotoxic T-cell activity. Notably, combining the glycolysis inhibitor 2-deoxy-d-glucose with the EGFR inhibitor gefitinib effectively suppressed TNBC cell proliferation and tumor growth. Our results illustrate how jointly targeting the EGFR/F1,6BP signaling axis may offer an immediately applicable therapeutic strategy to treat TNBC.
0
Citation220
0
Save
0

Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling

Jiangjiang Zhu et al.Aug 4, 2014
Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.
0
Citation184
0
Save
1

Wide‐ranging genetic variation in sensitivity to rapamycin in Drosophila melanogaster

Ben Harrison et al.Aug 12, 2024
The progress made in aging research using laboratory organisms is undeniable. Yet, with few exceptions, these studies are conducted in a limited number of isogenic strains. The path from laboratory discoveries to treatment in human populations is complicated by the reality of genetic variation in nature. To model the effect of genetic variation on the action of the drug rapamycin, here we use the growth of Drosophila melanogaster larvae. We screened 140 lines from the Drosophila Genetic References Panel for the extent of developmental delay and found wide-ranging variation in their response, from lines whose development time is nearly doubled by rapamycin, to those that appear to be completely resistant. Sensitivity did not associate with any single genetic marker, nor with any gene. However, variation at the level of genetic pathways was associated with rapamycin sensitivity and might provide insight into sensitivity. In contrast to the genetic analysis, metabolomic analysis showed a strong response of the metabolome to rapamycin, but only among the sensitive larvae. In particular, we found that rapamycin altered levels of amino acids in sensitive larvae, and in a direction strikingly similar to the metabolome response to nutrient deprivation. This work demonstrates the need to evaluate interventions across genetic backgrounds and highlights the potential of omic approaches to reveal biomarkers of drug efficacy and to shed light on mechanisms underlying sensitivity to interventions aimed at increasing lifespan.
1
Citation1
0
Save
5

Protein catabolites as blood-based biomarkers of aging physiology: Findings from the Dog Aging Project

Ben Harrison et al.Oct 21, 2024
Abstract Our understanding of age-related physiology and metabolism has grown through the study of systems biology, including transcriptomics, single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers and to develop aging interventions that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) is designed to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing information, we were able to overcome the limitations inherent in breed-based estimates of genetic and physiological effects, and to probe the physiological and dietary basis of the age-related metabolome. We identified a significant effect of age on approximately 40% of measured metabolites. Among other insights, we discovered a potentially novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which can only be generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the higher ptmAA levels in older dogs. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.
5
3.3
3
Save
0

Selection for early reproduction leads to accelerated aging and extensive metabolic remodeling in Drosophila melanogaster populations

David Hubert et al.Jul 2, 2024
Abstract Experimental evolution studies that feature selection on life-history characters are a proven approach for studying the evolution of aging and variation in rates of senescence. Recently, the incorporation of genomic and transcriptomic approaches into this framework has led to the identification of hundreds of genes associated with different aging patterns. However, our understanding of the specific molecular mechanisms underlying these aging patterns remains limited. Here, we incorporated extensive metabolomic profiling into this framework to generate mechanistic insights into aging patterns in Drosophila melanogaster . Specifically, we characterized metabolomic change over time associated with accelerated aging in populations of D. melanogaster under selection for early reproduction compared to their controls. Using this data we: i) evaluated the evolutionary repeatability across the metabolome; ii) evaluated the value of the metabolome as a predictor of “biological age” in this system; and iii) identified specific metabolic pathways associated with accelerated aging. Generally, our findings suggest that the metabolome is a reliable predictor of age and senescence in populations that share a recent evolutionary history. Metabolomic analysis revealed that generations of selection for early reproduction resulted in highly repeatable alterations to the metabolome. Specifically, changes in carbohydrate, amino acid, and TCA cycle-related metabolite abundances over time point to metabolic remodeling that favors rapid early reproduction with long-term consequences for carbohydrate and protein utilization.
1

Age and sex dependent effects of metabolic response to muscle contraction

Matthew Campbell et al.Jun 1, 2023
Sarcopenia, the age-related loss of muscle mass and function, contributes to decreased quality of life in the elderly and increased healthcare costs. Decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance are all associated with increased oxidative stress and the decline in mitochondrial function with age. We hypothesized that elevated mitochondrial stress with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we designed two in vivo muscle-stimulation protocols to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise to characterize the effect of age and sex on mitochondrial substrate utilization in skeletal muscle following muscle contraction. Following HII stimulation, mitochondria from young skeletal muscle increased fatty acid oxidation compared to non-stimulated control muscle; however, mitochondria from aged muscle decreased fatty acid oxidation. In contrast, following LISS, mitochondrial from young skeletal muscle decreased fatty acid oxidation, whereas aged mitochondria increased fatty acid oxidation. We also found that HII can inhibit mitochondrial oxidation of glutamate in both stimulated and non-stimulated aged muscle, suggesting HII initiates circulation of an exerkine capable of altering whole-body metabolism. Analyses of the muscle metabolome indicates that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. Treatment with elamipretide, a mitochondrially targeted peptide, restored glutamate oxidation and metabolic pathway changes following HII suggesting rescuing redox status and improving mitochondrial function in aged muscle enhances the metabolic response to muscle contraction.